
12.0 INTRODUCTION
Any link or member that is in pure rotation can, theoretically, be perfectly balanced to
eliminate all shaking forces and shaking moments. It is accepted design practice to bal-
ance all rotating members in a machine unless shaking forces are desired (as in a vibrat-
ing shaker mechanism, for example). A rotating member can be balanced either statical-
ly or dynamically. Static balance is a subset of dynamic balance. To achieve complete
balance requires that dynamic balancing be done. In some cases, static balancing can be
an acceptable substitute for dynamic balancing and is generally easier to do.

Rotating parts can, and generally should, be designed to be inherently balanced by
their geometry. However, the vagaries of production tolerances guarantee that there will
still be some small unbalance in each part. Thus a balancing procedure will have to be
applied to each part after manufacture. The amount and location of any imbalance can
be measured quite accurately and compensated for by adding or removing material in the

correct locations.
In this chapter we will investigate the mathematics of determining and designing a

state of static and dynamic balance in rotating elements and also in mechanisms having
complex motion, such as the fourbar linkage. The methods and equipment used to mea-



sure and correct imbalance in manufactured assemblies will also be discussed. It is quite
convenient to use the method of d' Alembert (see Section 10.12, p. 513) when discussing
rotating imbalance, applying inertia forces to the rotating elements, so we will do that.

12.1 STATIC BALANCE

Despite its name, static balance does apply to things in motion. The unbalanced forces
of concern are due to the accelerations of masses in the system. The requirement for
static balance is simply that the sum of all forces on the moving system (including
d'Alembert inertial forces) must be zero.

This, of course, is simply a restatement of Newton's law as discussed in Section 10.1 (p. 491).

Another name for static balance is single-plane balance, which means that the
masses which are generating the inertia forces are in, or nearly in, the same plane. It is
essentially a two-dimensional problem. Some examples of common devices which meet
this criterion, and thus can successfully be statically balanced, are: a single gear or pul-
ley on a shaft, a bicycle or motorcycle tire and wheel, a thin flywheel, an airplane pro-
peller, an individual turbine blade-wheel (but not the entire turbine). The common de-
nominator among these devices is that they are all short in the axial direction compared
to the radial direction, and thus can be considered to exist in a single plane. An automo-
bile tire and wheel is only marginally suited to static balancing as it is reasonably thick
in the axial direction compared to its diameter. Despite this fact, auto tires are sometimes
statically balanced. More often they are dynamically balanced and will be discussed
under that topic.

Figure l2-la shows a link in the shape of a vee which is part of a linkage. We want
to statically balance it. We can model this link dynamically as two point masses ml and
m2 concentrated at the local CGs of each "leg" of the link as shown in Figure l2-lb.
These point masses each have a mass equal to that of the "leg" they replace and are sup-
ported on massless rods at the position (R1 or R2) ofthat leg's CG. We can solve for the
required amount and location of a third "balance mass" mb to be added to the system at
some location Rb in order to satisfy equation 12.1.

Assume that the system is rotating at some constant angular velocity 00. The accel-
erations of the masses will then be strictly centripetal (toward the center) , and the iner-
tia forces will be centrifugal (away from the center) as shown in Figure 12-1. Since the
system is rotating, the figure shows a "freeze-frame" image of it. The position at which
we "stop the action" for the purpose of drawing the picture and doing the calculations is
both arbitrary and irrelevant to the computation. We will set up a coordinate system with
its origin at the center of rotation and resolve the inertial forces into components in that
system. Writing vector equation 12.1 for this system we get:

Note that the only forces acting on this system are the inertia forces. For balancing,
it does not matter what external forces may be acting on the system. External forces
cannot be balanced by making any changes to the system's internal geometry. Note that
the ro2 terms cancel. For balancing, it also does not matter how fast the system is rotat-









These moments act in planes that include the axis of rotation of the assembly such
as planes XZ and YZ in Figure 12-2. The moment's vector direction, or axis, is perpen-
dicular to the assembly's axis of rotation.

Any rotating object or assembly which is relatively long in the axial direction com-
pared to the radial direction requires dynamic balancing for complete balance. It is pos-
sible for an object to be statically balanced but not be dynamically balanced. Consider
the assembly in Figure 12-2. TWo equal masses are at identical radii, 1800 apart rota-
tionally, but separated along the shaft length. A summation of -ma forces due to their
rotation will be always zero. However, in the side view, their inertia forces form a cou-
ple which rotates with the masses about the shaft. This rocking couple causes a moment
on the ground plane, alternately lifting and dropping the left and right ends of the shaft.

Some examples of devices which require dynamic balancing are: rollers, crank-
shafts, camshafts, axles, clusters of multiple gears, motor rotors, turbines, propeller
shafts. The common denominator among these devices is that their mass may be uneven-
ly distributed both rotationally around their axis and also longitudinally along their axis.

To correct dynamic imbalance requires either adding or removing the right amount
of mass at the proper angular locations in two correction planes separated by some dis-
tance along the shaft. This will create the necessary counter forces to statically balance
the system and also provide a counter couple to cancel the unbalanced moment. When
an automobile tire and wheel is dynamically balanced, the two correction planes are the
inner and outer edges of the wheel rim. Correction weights are added at the proper loca-
tions in each of these correction planes based on a measurement of the dynamic forces
generated by the unbalanced, spinning wheel.









So, when the design is still on the drawing board, these simple analysis techniques
can be used to determine the necessary sizes and locations of balance masses for any
assembly in pure rotation for which the mass distribution is defined. This two-plane
balance method can be used to dynamically balance any system in pure rotation, and all
such systems should be balanced unless the purpose of the device is to create shaking
forces or moments.

12.3 BALANCING LINKAGES

Many methods have been devised to balance linkages. Some achieve a complete bal-
ance of one dynamic factor, such as shaking force, at the expense of other factors such
as shaking moment or driving torque. Others seek an optimum arrangement that collec-
tively minimizes (but does not zero) shaking forces, moments, and torques for a best
compromise. Lowen and Berkof, [1] and Lowen, Tepper, and Berkof [2] give compre-
hensive reviews of the literature on this subject up to 1983. Additional work has been
done on the problem since that time, some of which is noted in the references at the end
of this chapter.

Complete balance of any mechanism can be obtained by creating a second "mirror
image" mechanism connected to it so as to cancel all dynamic forces and moments.
Certain configurations of multicylinder internal combustion engines do this. The pistons
and cranks of some cylinders cancel the inertial effects of others. We will explore these
engine mechanisms in Chapter 14. However, this approach is expensive and is only jus-
tified if the added mechanism serves some second purpose such as increasing power, as
in the case of additional cylinders in an engine. Adding a "dummy" mechanism whose
only purpose is to cancel dynamic effects is seldom economically justifiable.

Most practical linkage balancing schemes seek to minimize or eliminate one or more
of the dynamic effects (forces, moments, torques) by redistributing the mass of the ex-
isting links. This typically involves adding counterweights and/or changing the shapes
of links to relocate their CGs. More elaborate schemes add geared counterweights to
some links in addition to redistributing their mass. As with any design endeavor, there
are trade-offs. For example, elimination of shaking forces usually increases the shaking
moment and driving torque. We can only present a few approaches to this problem in
the space available. The reader is directed to the literature for information on other methods.







We now have two equations involving three links. The parameters for anyone link
can be assumed and the other two solved for. A linkage is typically first designed to sat-
isfy the required motion and packaging constraints before this force balancing procedure
is attempted. In that event, the link geometry and masses are already defined, at least in
a preliminary way. A useful strategy is to leave the link 3 mass and CG location as orig-
inally designed and calculate the necessary masses and CG locations of links 2 and 4 to
satisfy these conditions for balanced forces. Links 2 and 4 are in pure rotation, so it is
straightforward to add counterweights to them in order to move their CGs to the neces-
sary locations. With this approach, the right sides of equations 12.8b are reducible to
numbers for a designed linkage. We want to solve for the mass radius products m2b2 and
m4b4 and also for the angular locations of the CGs within the links. Note that the angles
<1>2 and <1>4 in equation 12.8 are measured with respect to the lines of centers of their re-
spective links.

Equations 12.8b are vector equations. Substitute the Euler identity (equation 4.4a,
p. 155) to separate into real and imaginary components, and solve for the x and y compo-
nents of the mass-radius products.



These components of the mR product needed to force balance the linkage represent
the entire amount needed. If links 2 and 4 are already designed with some individual
unbalance (the CG not at pivot), then the existing mR product of the unbalanced link must
be subtracted from that found in equations 12.8c and 12.8d in order to determine the size
and location of additional counterweights to be added to those links. As we did with the
balance of rotating links, any combination of mass and radius that gives the desired prod-
uct is acceptable. Use equations 12.2d and 12.2e to convert the cartesian mR products in
equations 12.8c and 12.8d to polar coordinates in order to find the magnitude and angle
of the counterweight's mR vector. Note that the angle of the mR vector for each link will
be referenced to that link's line of centers. Design the shape of the physical counter-
weights to be put on the links as discussed in Section 12.1 (p. 571).

12.4 EFFECTOF BALANCING ON SHAKING AND PIN FORCES

Figure 12-5 shows a fourbar linkage* to which balance masses have been added in ac-
cord with equations 12.8. Note the counterweights placed on links 2 and 4 at the calcu-
lated locations for complete force balance. Figure 12-6a shows a polar plot of the shak-
ing forces of this linkage without the balance masses. The maximum is 462 Ib at 15°.
Figure 12-6b shows the shaking forces after the balance masses are added. The shaking
forces are reduced to essentially zero. The small residual forces seen in Figure 12-6b
are due to computational round-off errors-the method gives theoretically exact results.





ground pivots at each time step create a time-varying shaking couple that rocks the
ground plane. These pin forces can be larger due to the balance weights and if so will
increase the shaking couple compared to its former value in the unbalanced linkage-
one trade-off for reducing the shaking forces to zero. The stresses in the links and pins
may also increase as a result of force-balancing.

12.5 EFFECTOF BALANCING ON INPUTTORQUE

Individually balancing a link which is in pure rotation by the addition of a counterweight
will have the side effect of increasing its mass moment of inertia. The "flywheel effect"
of the link is increased by this increase in its moment of inertia. Thus the torque needed
to accelerate that link will be greater. The input torque will be unaffected by any change
in the I of the input crank when it is run at constant angular velocity. But, any rockers in
the mechanism will have angular accelerations even when the crank does not. Thus, in-
dividually balancing the rockers will tend to increase the required input torque even at
constant input crank velocity.

Adding counterweights to the rotating links, necessary to force balance the entire
linkage, both increases the links mass moment of inertia and also (individually) unbal-
ances those rotating links in order to gain the global balance. Then the CGs of the rotat-
ing links will not be at their fixed pivots. Any angular acceleration of these links will
add to the torque loading on the linkage. Balancing an entire linkage by this method then
can have the side effect of increasing the variation in the required input torque. A larger
flywheel may be needed on a balanced linkage in order to achieve the same coefficient
of fluctuation as the unbalanced version of the linkage.

Figure 12-8 shows the input torque curve for the unbalanced linkage and for the
same linkage after complete force-balancing has been done. The peak value of the re-
quired input torque has increased as a result of force-balancing.



Note, however, that the degree of increase in the input torque due to force-balanc-
ing is dependent upon the choice of radii at which the balance masses are placed. The
extra mass moment of inertia that the balance mass adds to a link is proportional to the
square of the radius to the CG of the balance mass. The force balance algorithm only
computes the required mass-radius product. Placing the balance mass at as small a radi-
us as possible will minimize the increase in input torque. Weiss and Fenton [5J have
shown that a circular counterweight placed tangent to the link's pivot center (Figure 12-9)
is a good compromise between added weight and increased moment of inertia. To re-
duce the torque penalty further, one could also choose to do less than a complete force
balance and accept some shaking force in trade.

where TZI is the negative of the driving torque T12' Rl is the position vector from Oz to
04 (i.e., link 1), and F41 is the force of the rocker on the ground plane. In a general link-
age, the magnitude of the shaking moment can be reduced but cannot be eliminated by
means of mass redistribution within its links. Complete balancing of the shaking mo-
ment requires the addition of supplementary links and then only works for certain spe-
cial configurations of a fourbar linkage.[7]

Many techniques have been developed that use optimization methods to find a link-
age mass configuration that will minimize the shaking moment alone or in combination
with minimizing shaking force and/or input torque. Hockey [8J, [9J shows that the fluc-
tuation in kinetic energy and input torque of a mechanism may be reduced by proper dis-
tribution of mass within its links and that this approach is more weight efficient than add-
ing a flywheel to the input shaft. Berkof [10] also describes a method to minimize the
input torque by internal mass rearrangement. Lee and Cheng [11] and Qi and Pen-
nestri [1zJ show methods to optimally balance the combined shaking force, shaking mo-
ment, and input torque in high-speed linkages by mass redistribution and addition of
counterweights. Porter [13] suggests using a genetic algorithm to optimize the same set
of parameters. Bagci [14J describes several approaches to balancing shaking forces and
shaking moments in the fourbar slider-crank linkage. Most of these methods require sig-
nificant computing resources, and space does not permit a complete discussion of them
all here. The reader is directed to the references for more information.

Berkofs method for complete moment balancing of the fourbar linkage [7]is simple
and useful even though it is limited to "inline" linkages, i.e., those whose link CGs lie on
their respective link centerlines as shown in Figure 12-9. This is not an overly restric-
tive constraint since many practical linkages are made with straight links. Even if a link
must have a shape that deviates from its line of centers, its CG can still be placed on that
line by adding mass to the link in the proper location, increased weight being the trade-off.

For complete moment balancing, in addition to being an inline linkage, the coupler
must be reconfigured to become a physical pendulum such that it is dynamically equiv-
alent to a lumped mass model as shown in Figure 12-10. The coupler is shown in Figure







terweight can balance any planar moment that is proportional to an angular acceleration
and does not introduce any net inertia, forces to upset the force balance of the linkage.
Trade-offs include increased input torque and larger pin forces resulting from the torque
required to accelerate the additional rotational inertia. There can also be large loads on the
gear teeth and impact when torque reversals take up the gearsets' backlash, causing noise.

The shaking moment of an inline fourbar linkage is derived in reference [6] as

Equations l2.l7a and l2.l7b are the force-balance criteria of equation 12.8 written
for the inline linkage case. Equation l2.l7c defines the coupler as a physical pendulum.
Equations l2.l7d and l2.l7e define the mass moments of inertia required for the two
inertia counterweights. Note that if the linkage is run at constant angular velocity, a2
will be zero in equation 12.14 and the inertia counterweight on link 2 can be omitted.



12.7 MEASURING AND CORRECTING IMBALANCE

While we can do a great deal to ensure balance when designing a machine, variations
and tolerances in manufacturing will preclude even a well-balanced design from being
in perfect balance when built. Thus there is need for a means to measure and correct the
imbalance in rotating systems. Perhaps the best example assembly to discuss is that of
the automobile tire and wheel, with which most readers will be familiar. Certainly the
design of this device promotes balance, as it is essentially cylindrical and symmetrical.
If manufactured to be perfectly uniform in geometry and homogeneous in material, it
should be in perfect balance as is. But typically it is not. The wheel (or rim) is more
likely to be close to balanced, as manufactured, than is the tire. The wheel is made of a
homogeneous metal and has fairly uniform geometry and cross section. The tire, how-
ever, is a composite of synthetic rubber elastomer and fabric cord or metal wire. The
whole is compressed in a mold and steam-cured at high temperature. The resulting ma-
terial varies in density and distribution, and its geometry is often distorted in the process
of removal from the mold and cooling.

STATIC BALANCING After the tire is assembled to the wheel, the assembly must
be balanced to reduce vibration at high speeds. The simplest approach is to statically bal-
ance it, though it is not really an ideal candidate for this approach as it is thick axially
compared to its diameter. To do so it is typically suspended in a horizontal plane on a
cone through its center hole. A bubble level is attached to the wheel, and weights are
placed at positions around the rim of the wheel until it sits level. These weights are then
attached to the rim at those points. This is a single-plane balance and thus can only can-
cel the unbalanced forces. It has no effect on any unbalanced moments due to uneven
distribution of mass along the axis of rotation. It also is not very accurate.

DYNAMIC BALANCING The better approach is to dynamically balance it. This
requires a dynamic balancing machine be used. Figure 12-12 shows a schematic of such
a device used for balancing wheels and tires or any other rotating assembly. The assem-
bly to be balanced is mounted temporarily on an axle, called a mandrel, which is sup-
ported in bearings within the balancer. These two bearings are each mounted on a sus-
pension which contains a transducer that measures dynamic force. A common type of
force transducer contains a piezoelectric crystal which delivers a voltage proportional to
the force applied. This voltage is amplified electronically and delivered to circuitry or
software which can compute its peak magnitude and the phase angle of that peak with
respect to some time reference signal. The reference signal is supplied by a shaft encod-
er on the mandrel which provides a short duration electrical pulse once per revolution in
exactly the same angular location. This encoder pulse triggers the computer to begin
processing the force signal. The encoder may also provide some large number of addi-
tional pulses equispaced around the shaft circumference (often 1024). These are used to
trigger the recording of each data sample from the transducers in exactly the same loca-
tion around the shaft and to provide a measure of shaft velocity via an electronic counter.

The assembly to be balanced is then "spun up" to some angular velocity, usually
with a friction drive contacting its circumference. The drive torque is then removed and
the drive motor stopped, allowing the assembly to "freewheel." (This is to avoid mea-
suring any forces due to imbalances in the drive system.) The measuring sequence is
begun, and the dynamic forces at each bearing are measured simultaneously and their
waveforms stored. Many cycles can be measured and averaged to improve the quality



of the measurement. Because forces are being measured at two locations displaced along
the axis, both summation of moment and summation of force data are computed.

The force signals are sent to a built-in computer for processing and computation of
the needed balance masses and locations. The data needed from the measurements are
the magnitudes of the peak forces and the angular locations of those peaks with respect
to the shaft encoder's reference angle (which corresponds to a known point on the
wheel). The axial locations of the wheel rim's inside and outside edges (the correction
planes) with respect to the balance machine's transducer locations are provided to the
machine's computer by operator measurement. From these data the net unbalanced force
and net unbalanced moment can be calculated since the distance between the measured
bearing forces is known. The mass-radius products needed in the correction planes on
each side of the wheel can then be calculated from equations 12.3 (p. 574) in terms of
the mR product of the balance weights. The correction radius is that of the wheel rim.
The balance masses and angular locations are calculated for each correction plane to put
the system in dynamic balance. Weights having the needed mass are clipped onto the
inside and outside wheel rims (which are the correction planes in this case), at the proper
angular locations. The result is a fairly accurately dynamically balanced tire and wheel.


