
Towards Formal Modelling and Analysis of SCTP
Connection Management

Somsak Vanit-Anunchai

School of Telecommunication Engineering
Institute of Engineering

Suranaree University of Technology
Muang, Nakhon Ratchasima, Thailand

Email: somsav@sut.ac.th

Abstract. The Stream Control Transmission Protocol (SCTP - RFC 2960) is
a reliable unicast transport protocol originally specified by the Internet Engi-
neering Task Force (IETF) in 2000. Its design rationale aims to overcome the
weaknesses of the Transmission Control Protocol (TCP). However, after years
of implementing and testing, defects and errors in RFC 2960 were reported and
later fixed in RFC 4460. Incorporating those suggested fixes, IETF revised the
SCTP specification and in September 2007 published RFC 4960, which replaces
RFC 2960. This paper presents a Coloured Petri Net (CPN) model of the re-
vised version of SCTP’s connection management from RFC 4960. In particular
we model the revised Tie-Tag mechanisms that differ significantly from those
specified in RFC 2960. By following a procedure-based approach, each CPN
page relates to only a few sections in RFC 4960, which aids validation. Pre-
liminary results from state space analysis reveal two potential problems. First,
SCTP association establishment can terminate in a half open state, with one
side in CLOSED but the other in ESTABLISHED. Second, simultaneous estab-
lishment can lead to states in which both sides are in ESTABLISHED but the
verification tags in both Transmission Control Blocks do not match.

Keywords: SCTP, Formal Methods, Coloured Petri Nets, State space methods.

1 Introduction

Motivation The Stream Control Transmission Protocol (SCTP) [6] is a trans-
port protocol that was approved by the Internet Engineering Task Force (IETF)
as Request for Comment (RFC) 2960 in 2000. It was originally designed by the
Signalling Transport working group for transporting telephony signalling mes-
sages over UDP. These signalling messages have stringent timing requirements
which are difficult to meet when using TCP. Foreseeing its significance and
great potential to become a major transport protocol, IETF decided to operate
SCTP over IP instead. Despite its potential to replace TCP, several years of
implementation and testing revealed fifty-two defects in the SCTP specifica-
tion, RFC 2960. Solutions were gathered and discussed in RFC 4460 [5]. The
IETF has published a revised version of the SCTP specification, RFC4960 [4],
in September 2007, and RFC 2960 has become obsolete. This revised specifica-
tion raises two questions. Firstly, are there any unknown defects left? Secondly,
are any new defects introduced in the new specification?

In addtion to the motivation for formal validation of SCTP, we wish to
experiment with a new modelling approach called the “procedure-based” ap-
proach. In [2] Billington and Vanit-Anunchai discussed the advantages and

disadvantages of state-based and event-processing CPN modelling styles. The
state-based modelling approach has the advantage of readability, and unspec-
ified actions can be easily discovered. Its disadvantage comes from redundant
specification of actions that are common to several states. While the event pro-
cessing modeling approach has the advantage of folding common actions across
several states, which makes the CPN model easier to maintain, it has some
drawbacks with respect to readability. Thus [2] proposed the procedure-based
modelling approach, which structures the CPN model according to the proto-
col’s functionality. This modelling style has two merits. Firstly, the CPN model
is easy to maintain. Secondly, the procedure-based CPN model comprises typi-
cal - simple procedures and unexpected - complex procedures (error handling).
Beginners can pay attention to the typical scenarios before getting into the com-
plex procedures later. The procedure-based CPN model of DCCP connection
management presented in [2] evolved from a previous version modelled using
the state-based approach. In this paper, we wish to gain experience building a
procedure-based CPN model directly from an informal specification.

Previous work Since published in 2000, SCTP has been an attractive re-
search topic. Although there has been a lot of work on SCTP regarding its
security, performance, and extensions of SCTP functionality, we have found
only one article (in Portuguese) [3] modelling SCTP connection management
using Coloured Petri Nets (CPN). The CPN model we propose in this paper
differs from [3] in three aspects. Firstly, we build the CPN model according
the revised specification, RFC 4960, while [3] uses RFC 2960 which is now ob-
solete. Secondly, while the CPN model in [3] did not include the procedures
for when SCTP nodes receive duplicated or unexpected messages, our model
includes these events (described in Sections 5.2 and 9.2 in RFC 4960). Thirdly,
the CPN model in [3] follows the state-based approach, whereas our model uses
the procedure-based approach of [2].

Contribution The difficulty of designing a protocol is again witnessed by the
defect list in RFC 4460 [5]. Despite many years of implementing and testing, it
is still important to have a proper formal model and to perform formal analysis
of SCTP connection management, especially when SCTP is designed for reliable
data transfer such as signalling in Public Switching Telephone Networks. The
contribution of this paper is three-fold. Firstly, we propose a CPN model of
SCTP connection management based on Internet Standard RFC 4960. The
model provides good insight into how to manipulate and use the Tie-Tags.
Secondly, even though no errors in the shutdown scenarios are found, we discover
an error in section 5.2.4 of RFC 4960 and two potential defects in the association
establishment scenarios. Thirdly, for readers who are not interested in SCTP,
this paper demonstrates an example of modelling a transport protocol using
the procedure-based approach.

Organisation This paper is organised as follows. Section 2 provides an overview
of SCTP association set up and graceful shutdown. Modelling assumptions are

listed in Section 3. The description of the CPN model of SCTP connection
management and its declarations is given in Section 4. Section 5 presents the
analysis results and a discussion of terminal markings. Section 6 presents con-
clusions and future work.

2 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) [6] is a unicast connection
oriented transport protocol. Like TCP, SCTP provides an error-free reliable
flow of data, without loss or duplication, between a client and a server. To
ensure that the behaviour of SCTP’s traffic mimics that of TCP, it uses the
same congestion control algorithm as TCP.

SCTP has three distinctive features. Firstly, SCTP introduces the concept
of multiple streams to reduce the problem of head-of-line blocking. It delivers its
user messages in sequence within a given stream. Multiple streams are bundled
into a single SCTP packet. The number of streams in an association is set up
during startup. If one stream is blocked, delivery on the other streams can
still proceed. Secondly, SCTP has the ability to support multiple IP addresses,
called multi-homing. Several paths may exist between two nodes but only the
primary path is used for transferring data. Other paths are redundant and
are used when the network fails. Thus an SCTP connection is referred as an
“association” between two sets of IP addresses. Thirdly, it defends against state-
exhaustion attacks using a cookie mechanism and a four way handshake during
connection establishment.

2.1 SCTP Packet Format

An SCTP packet comprises a common header and one or more chunks as shown
in Fig. 1. The SCTP header contains 16 bit source and destination port num-
bers, a 32 bit verification tag and a 16 bit checksum. The verification tag is
used to protect an association from blind attacks. Each end point keeps two
values of verification tag: “My Verification Tag” and “Peer’s Verification Tag”.
In general, any received packets containing a verification tag differing from “My
Verification Tag” will be discarded. On the other hand, sent packets will carry
a verification tag equal to “Peer’s Verification Tag”. These tag values are ran-
domly selected at initialization and exchanged between the end points during
association set up.

A Chunk is an information unit. There are 12 different control chunks but
only one data chunk. The control chunks are Init1, InitAck, SACK, Heartbeat,
HeartbeatAck, Abort, Shutdown, ShutdownAck, Error, CookieEcho, CookieAck
and ShutdownComplete. Control chunks are used to setup and shutdown the as-
sociation, selectively acknowledge, report error messages, monitor reachability
of the peer, etc. Association setup uses a four-way handshake comprising four
control chunks: Init; InitAck; CookieEcho and CookieAck. Graceful closing uses
1 Chunk names in the RFC are shown in all uppercase letters. To increase readability and

distinguish them from SCTP States, the chunk names in this paper are given with only the
first letters capitalized instead.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port

 Common Verification Tag

 Header

Checksum

Chunk Type Chunk Flags Chunk Length

Chunk 1

 (Control Chunk)

Chunk Value

. . .

Type = 0 Reserved U B E Length

TSN

Chunk N Stream Indentifer S Stream Sequence Number n

 (Data Chunk)

Payload Protocol Identifer

User Data (Seq n of Stream S)

Fig. 1. SCTP Packet Format.

a three-way handshakes comprising three control chunks: the Shutdown; Shut-
downAck and ShutdownComplete chunks. The Data transfer phase involves
Data and SACK (Selective Acknowledgement) chunks. Further detail of the
structure of chunks can be found in [4].

2.2 SCTP Connection Management Procedures

The state diagram shown in Fig. 2 illustrates the connection management proce-
dures of SCTP. It comprises eight states: CLOSED; COOKIE-WAIT; COOKIE-
ECHOED; ESTABLISHED; SHUTDOWN PENDING; SHUTDOWN-SENT;
SHUTDOWN-RECEIVED and SHUTDOWN-ACK-SENT. The typical associ-
ation establishment and close down procedures are shown in Fig. 3.

Normal Association Establishment Figure 2 (a) shows the association set
up state diagram, and Fig. 3 (a) shows a typical set up procedure. An association
between two nodes, A and Z, is initiated by a SCTP user on node “A” issu-
ing an “ASSOCIATE” command. After receiving the “ASSOCIATE” primitive,
node A sends an SCTP packet with a verification tag (VTAG) equal to zero.
This SCTP packet contains only an Init chunk with an initial tag to specify the
verification tag of incoming packets. Then node A enters the COOKIE-WAIT
state. On receiving the Init chunk, node Z replies with an InitAck chunk indi-
cating that it is willing to communicate with node A. The response includes
node Z’s initial tag number and encrypted cookie containing enough informa-
tion to create node Z’s Transmission Control Block (TCB). To prevent state

rcv CookieEcho {cookie}
crate TCB from cookie
snd CookieAck

rcv InitAck {cookie}
snd CookieEcho {cookie}

ASSOCIATE primitive
snd Init

rcv Init
snd InitAck {cookie}

rcv CookieAck

ESTABLISHED

COOKIE_ECHOED

COOKIE_WAIT

CLOSED

(a)

no more
outstanding data
snd Shutdown

rcv ShutdownSHUTDOWN primitive

no more
outstanding data
snd ShutdownAck

rcv ShutDownComplete

rcv ShutdownAck

ESTABLISHED

SHUTDOWN
PENDING

SHUTDOWN
ACK-SENT

CLOSED

SHUTDOWN
RECEIVED

SHUTDOWN
 SENT

rcv Shutdown
snd ShutdownAck

(b)

Fig. 2. SCTP State Diagram (a) association set up (b) closing down.

exhaustion attacks node Z is still in CLOSED after replying with an InitAck.
To acknowledge the InitAck, node A returns the cookie in a CookieEcho chunk
and enters COOKIE-ECHOED. When carrying an Init or InitAck chunk, the
SCTP packet comprises only one chunk. When sending a CookieEcho chunk,
the SCTP packet may enclose Data chunks after the CookieEcho chunk. On
receiving a CookieEcho from node A, node Z creates its TCB from the received
cookie, enters the ESTABLISHED state, replies with CookieAck and is ready
for data transfer. After receiving CookieAck, node A enters ESTABLISHED
indicating that the association is established. During data transfer, endpoint
nodes A and Z may exchange Data and SACK chunks.

Graceful Association Shutdown Figure 2 (b) shows the association close
down state diagram, and Fig. 3 (b) shows a typical graceful close down proce-
dure. When the application at node A issues a “SHUTDOWN” command, node
A enters the SHUTDOWN PENDING state and waits for all outstanding data
chunks to be acknowledged. This end point stops accepting new data from the
user. After all remaining data is acknowledged, node A sends a Shutdown chunk
and enters the SHUTDOWN-SENT state. When node Z receives a Shutdown
chunk, it must enter SHUTDOWN-RECEIVED, stop accepting new data from
its user, and remain in this state until all outstanding data chunks are acknowl-
edged. After all remaining data is acknowledged, node Z sends a ShutdownAck
chunk and enters the SHUTDOWN-ACK-SENT state. After node A receives
a ShutdownAck chunk, it must respond with a ShutdownComplete chunk and
enter the CLOSED state. When node Z receives the ShutdownComplete chunk
in SHUTDOWN-ACK-SENT, it enters the CLOSED state.

Besides the typical association set up and closing down procedures, the
SCTP specification allows the simultaneous opening and simultaneous closing
down of associations. For instance, when an endpoint in SHUTDOWN-SENT

 Node A Node Z
 CLOSED CLOSED

 [ASSOCIATE]
 Init (vtag=0, itag=Ax)
 COOKIE_WAIT
 (itag=Ax)

 InitAck (vtag=Ax, itag=Zx, CK[Zx.Ax])

COOKIE_ECHOED
 (my vtag=Ax, CookieEcho (vtag=Zx, CK([Zx.Ax])

 peer’s vtag =Zx) CLOSED

 CookieAck (vtag=Ax) ESTABLISHED
 (my vtag=Zx,
 ESTABLISHED peer’s vtag = Ax)
 (my vtag=Ax,

 peer’s vtag =Zx)

(a)

 Node A Node Z
 ESTABLISHED ESTABLISHED
 (my tag=Ax, (my vtag=Zx,
 peer’s tag =Zx) peer’s vtag=Ax)
 [SHUTDOWN]
 SHUTDOWN PENDING

No more outstanding data
 SHUTDOWN-SENT Shutdown (vtag=Zx)
 (my tag=Ax,
 peer’s tag =Zx)
 SHUTDOWN-RECEIVED
 (my vtag=Zx,

 peer’s vtag=Ax)

 No more outstanding data
 ShutdownAck (vtag=Ax) SHUTDOWN-ACK-SENT

 (my vtag=Zx,
 peer’s vtag=Ax)

 CLOSED ShutdownComplete (vtag=Zx)

 CLOSED

(b)

Fig. 3. Typical message sequence charts (a) association set up (b) closing down.

receives a Shutdown chunk, it sends a ShutdownAck in response and enters
SHUTDOWN-ACK-SENT.

Handling Unexpected Init, InitAck, CookieEcho, and CookieAck Be-
sides typical set up and closedown procedures, RFC 4960 specifies the rules
to handle duplicate and unexpected Init, InitAck, CookieEcho, and CookieAck
chunks in Section 5.2. These rules are intended to identify and solve problems
that occur in the following scenarios.

1) An association is already established and both sides are in ESTAB-
LISHED. An end point crashes and attempts to restore the association by
sending a new Init chunk with a new Initial Tag.

2) Both end points attempt to open the association simultaneously.
3) The control chunk used to establish the association is stale.
4) An attacker generates a false SCTP packet.
5) The peer keeps retransmitting CookieEcho chunks and never receives a

CookieAck.

Section 5.2 of RFC 4960 discusses the definition of Tie-Tags. Tie-Tags are
copies of two verification tags (my verification tag and peer’s verification tag).
Actions specified in RFC 4960 that significantly differ from RFC 2960 are how
to store and use the Tie-Tags. RFC 2960 specifies the Tie-Tags being stored
in the cookie only but RFC 4960 requires to store the Tie-Tags in both cookie
and TCB. The Tie-Tags in the TCB are called “Local Tag” and “Peer’s Tag”.
The Tie-Tags in the cookie are called “Local Tie-Tag” and “Peer’s Tie-Tag”.
The Tie-Tags are used to tie the received cookie of the new association with
the old association. The Local Tie-Tag and the Peer’s Tie-Tag (in the cookie)
are compared with the Local Tag and the Peer’s Tag (in the TCB) to ensure
that the cookie belongs to the current association.

Section 5.2.4 of RFC 4960 discusses how SCTP responds when receiving an
unexpected CookieEcho chunk. The Tie-Tags and verification tags in the cookie
are compared with the verification tags in the existing TCB to identify which
scenario occurs. Thus the received CookieEcho chunk can be correctly handled.
An example of the scenarios is an association restart. When one side crashes
and loses its existing TCB, Tie-Tags are used to link the restart association to
the original association without shutting down and starting a new association.

3 Modelling Scope and Assumptions

Our model comprises all the state transitions of Fig. 2, and incorporates the
narrative description from the RFC 4960 [4] Section 5.1, 5.2, 8.4, 8.5, 9.1 and
9.2. We also make the following assumptions regarding SCTP connection man-
agement when creating our CPN model.

1. We only consider a single association instance, while ignoring the proce-
dures for data transfer, congestion control and other options. One SCTP packet
contains only one chunk. A SCTP packet is modelled by chunk type, verification
tag, initial tag and cookie. A cookie is modelled by “My Verification Tag” and
“Peer’s Verification Tag”, “Local-Tie-Tag” and “Peer’s-Tie-Tag”.

2. Other fields in the SCTP packet are omitted because they do not affect
the operation of the connection management procedure.

3. We do not consider misbehaviour or malicious attack.
4. Reordered or lossy channels may mask out possible deadlock, such as un-

specified receptions. Thus we follow the incremental procedure outlined in [1]
and analyse the CPN model with the following channel characteristics: FIFO
without loss, reordered without loss, FIFO with loss, and reordered with loss,
using the method proposed in [8]. However due to space limitations and for the
sake of readability, we only discuss the case when the communication channels
can delay and reorder packets without loss.

4 CPN Model of SCTP Connection Management

This section describes our CPN model of SCTP association establishment and
shutdown procedures. Influenced by [2,7], the hierarchical structure of our CPN
model is a procedure-based style. It comprises four hierarchical levels, 6 places,

��������������	
���
��������������	
���
 �
��������������������� �������������������������������� ������ ����������� �����
�
�����������������������������	
���
 ��������	
���

Fig. 4. The Top-level CPN page.

16 substitution transitions, 54 executable transitions and 2 ML functions. The
top-level page of the SCTP-CPN model is illustrated in Fig. 4. Two substitution
transitions (SCTP’A and SCTP’Z) represent the SCTP end point nodes, A and
Z. Each side connects to four places. One place represents an application user
typed by COMMAND. Another models a Transmission Control Block typed
by TCB. Both end points are connected via two channel places, CH A Z and
CH Z A. We assume that during association set up and closing down a packet
contains only one chunk. Thus the channel places are typed by CHUNK, defined
in Fig. 7. The layout of the top level CPN page also reflects the well-known
model of the n-layer in a layered protocol architecture. The application layer
is placed on the top while the underlying medium layer is below the protocol
entity.

The substitution transitions, SCTP’A and SCTP’Z, are linked to the second
level page named SCTP Procedures, shown in Fig. 5. We divide
SCTP Procedures into five categories: normal events; unexpected events; re-
transmission; abort and checking Invalid Tags. Shown in Fig. 6 (a), the nor-
mal events comprise NormalEstablish and NormalShutDown of an association.
The unexpected events are when the end points receive unexpected packets.
We group the unexpected events into three CPN substitution transitions ac-
cording to chunk types: UnexpectedIntIntAck; UnexpectedCookieEchoCookieAck
and UnexpectedShutdown, shown in Fig. 6 (b). Space limitation prevents us
from including all CPN model pages. Thus this paper will illustrate only five
CPN pages: Normal’Establish, Normal’Shut Down, Unexpected’Int IntAck, Unex-
pected’CookieEcho CookieAck and Unexpected’Shutdown.

With a state-based approach a CPN page represents several actions that
may be scattered through the narrative specification. When modelling SCTP
connection management with the procedure-based style, actions in each CPN
page are confined to only a few sections in RFC 4960, as illustrated in Table 1.
This makes our CPN model easier to understand when reading it alongside
RFC 4960.

��������� 	
������������� 	
����
��������
��
����� �����
��
����� �������
��������������������������
����� 	�������� ��� 	

��� � ���������

�� ������

�!� �!�����
�"�#� �"�#�

�!�

��

��

��� �����
��
����������������� 	
�������������� 	
����

Fig. 5. The SCTP Procedures page.

������ ����	
�
�� �����

��� ������
������ ������ ���
��

��

� ��� �������������������������

���� ����������������������������

(a)

����������	
�����	
�����
������������������
������������������
�����������

�� �������

��� ��������
������ ������

���

��
��������
�����������	
�����

�������������������� �������������������������

(b)

Fig. 6. (a) The Normal page (b) The Unexpected page.

4.1 Definition of CHUNK

When considering an abstract representation of SCTP packets, unlike the pack-
ets of TCP and DCCP, we found that Transmission Sequence Numbers (TSN)
and Stream Sequence numbers are used only during the data transfer phase and
are not relevant to SCTP connection management. On the other hand, Verifi-
cation Tags (VTAG) play a major role during SCTP association establishment.
Figure 7 defines the data structure of an SCTP packet called CHUNK (recall
that we model each packet as a single chunk only). Many chunks have a differ-
ent formats, thus we declare CHUNK (line 10) as the union of nine colour sets:
VTAGxITAG (for Init chunk), VTAGxITAGxCOOKIE (for InitAck chunk),
VTAGxCOOKIE (for CookieEcho chunk), four sets of VTAG (for CookieAck,
Data, Shutdown and ShutdownAck chunks) and two sets of TFLGxVTAG (for
Abort and ShutdownComplete chunks). Chunk types are distinguished by the
ML selectors shown in line 10 to 14.

Procedures CPN Page Relevant Sections
Normal Event

Normal establishment Establish 5.1
Normal Shutdown Shut Down 9.2

Unexpected Events
Receiving unexpected Init chunk Init InitAck 5.2.1, 5.2.2
Receiving unexpected InitAck chunk Init InitAck 5.2.3
Receiving unexpected CookieEcho chunk CookieEcho CookieAck 5.2.4
Receiving unexpected CookieAck chunk CookieEcho CookieAck 5.2.5
Receiving unexpected Shutdown chunk Shutdown 9.2
Receiving unexpected ShutdownAck chunk Shutdown 9.2
Receiving unexpected Shutdown 9.2
ShutdownComplete chunk

Abort Abort 9.1
Retransmission Retransmission 5.1, 9.2
Validation of VTAG CheckInvalidVTAG 8.4, 8.5

Table 1. Relationship between SCTP procedures, CPN pages and sections in RFC 4960.

1: colset VTAG = int;

2: colset VTAGxITAG = product VTAG * VTAG; (* Init and InitAck Chunk *)

3: colset MyVTAGxPeerVTAG = product VTAG * VTAG;

4: colset COOKIE = record CK_TAG:MyVTAGxPeerVTAG

5: * CK_TT:MyVTAGxPeerVTAG;

6: colset VITAGxCOOKIE = record VI:VTAGxITAG * CK:COOKIE; (* InitAck chunk *)

7: colset VTAGxCOOKIE = record VT:VTAG * CK:COOKIE; (* CookieEcho Chunk *)

8: colset TFLAG = with T_ON | T_OFF;

9: colset TFLAGxVTAG = product TFLAG * VTAG;

10: colset CHUNK = union Init:VTAGxITAG + InitAck:VTAGxITAGxCOOKIE

11: + CookieEcho:VTAGxCOOKIE + CookieAck:VTAG

12: + Data:VTAG + Abort:TFLAGxVTAG

13: + Shutdown:VTAG + ShutdownAck:VTAG

14: + ShutdownComplete:TFLAGxVTAG;

Fig. 7. The definition of SCTP Chunk.

Line 1 defines the basic unit, VTAG, as the set of integers. Although an
integer in CPN Tools is not a 32-bit unsigned integer like the VTAG field shown
in Fig. 1, this does not affect the analysis of the model. Notice that according
to our model abstraction, besides T-Flag, CHUNK comprises only VTAG and
the compositions of VTAGs.

Each endpoint shall keep my and peer’s verification tags in its TCB. When
an endpoint sends out a packet, the value of peer’s verification tag is copied into
VTAG field of the outgoing chunks. If an endpoint receives an SCTP packet
of which VTAG field does not match my verification tags, the packet shall
be silently discarded. Peer’s verification tags of both sides are initialized by
exchanging the value in the Initial Tag (ITAG) field of the Init and InitAck
chunks (see Fig. 3 (a)). Thus the data structure of the Init chunk is defined as
the product of two verification tags (VTAGxITAG - line 2). The InitAck chunk
(line 6) is modelled by a record of VTAGxITAG and COOKIE. Despite a cookie
containing a lot of parameters, we model COOKIE (line 4) as a record of two
pairs of VTAG: (My Verification Tag, Peer’s Verification Tag) and (Local-Tie-
Tag, Peer-Tie-Tag).

Line 7 defines CookieEcho chunk as the record of VTAG and COOKIE,
whereas CookieAck, Shutdown and ShutdownAck are modelled by only VTAG.

Abort and ShutdownComplete chunks use T-Flag to indicate whether, when
sending out these chunks, the TCB exists or not. If the TCB does exist, the
Abort and ShutdownComplete chunks have T-Flag set to off and VTAG equal
to the peer’s verification tag. When TCB does not exist, T-flag is on and the
VTAG field equals the verification tag of the received packet the SCTP entity is
responding to. Thus Abort and ShutdownComplete chunks (line 9) are defined
by the product of TFLAG and VTAG (TFLAGxVTAG).

4.2 Definition of TCB

During each stage of association establishment the TCB of a SCTP endpoint
may record different data. CLOSED means there is no connection, and no state
parameters exist. A SCTP node in the COOKIE-WAIT state has no knowledge
of the peer’s verification tag but knows only my verification tag. Both verifica-
tion tags are known in the COOKIE-ECHOED state but a SCTP node may
retransmit the CookieEcho chunk together with the echoed cookie. Thus the
SCTP node needs to store the cookie for the purpose of retransmission because
the content in the cookie is encrypted and cannot be recreated.

According to the differences in the TCB data structure we describe above,
we divide SCTP states into four groups: CLOSED, COOKIE-WAIT, COOKIE-
ECHOED and the states after association established. Figure 8 declares TCB
in line 12 as a union set of empty set, COOKIEWAIT CB,COOKIE ECHOED CB
and SCTP CB. SCTP’s state are distinguished by ML selectors as defined in line
12. Similar to CHUNK, besides the retransmission counter, a TCB comprises
only VTAG and the compositions of VTAGs.

1: colset RCNT = int;

2: colset COOKIEWAIT_CB = record Rcnt:RCNT * myvtag:VTAG

3: * SV_TT:MyVTAGxPeerVTAG;

4: colset SV_in_TCB = record Rcnt:RCNT

5: * SV_VT:MyVTAGxPeerVTAG

6: * SV_TT:MyVTAGxPeerVTAG;

7: colset COOKIE_ECHOED_CB = product SV_in_TCB * COOKIE;

8: colset TCB_EXIST_STATE = with ESTABLISH | SHUTDOWN_PENDING

9: | SHUTDOWN_RECEIVED | SHUTDOWN_SENT

10: | SHUTDOWN_ACK_SENT;

11: colset SCTP_CB = product TCB_EXIST_STATE * SV_in_TCB;

12: colset TCB = union CLOSED + COOKIE_WAIT:COOKIEWAIT_CB

13: + COOKIE_ECHOED:COOKIE_ECHOED_CB

14: + TCBExist:SCTP_CB;

15: colset COMMAND = with ASSOCIATE | SHUTDOWN | ABORT;

Fig. 8. The definition of SCTP’s Transmission Control Block (TCB).

Differing from RFC 2960, in addition to only storing Tie-Tags in the cookie,
Section 5.2.2 of RFC 4960 defines the Local Tag and Peer’s Tag be stored in
association’s TCB. Thus line 4 declares state variables in TCB, SV in TCB, as a
record of retransmission counter (RCNT - line 1) and two products of verification
tags: (my verification tag, peer’s verification tag) and (Local Tag, Peer’s Tag).

After association establishment, a SCTP node in our model has TCB defined
as a product of state after the association established (TCB EXIST STATE- line
8) and state variables SV in TCB.

COOKIE ECHOED CB (Line 7) is defined as a product of SV in TCB and
COOKIE (line 4 of Fig. 7). Line 2 declares COOKIE WAIT CB as a record
of retransmission counter (RCNT), my verification tag (VTAG) and a pair of
VTAGs (Local Tag, Peer’s Tag). Line 15 defines user commands which are
ASSOCIATE, SHUTDOWN and ABORT.

4.3 CPN Model of SCTP Normal Procedures

This subsection illustrates two CPN pages of typical scenarios of SCTP connec-
tion management: association establishment and graceful shutdown. Beginners
who have just studied this protocol can easily understand these two CPN pages
because they are similar to state diagrams (Fig. 2) and the typical message
sequence chart in Fig. 3.

Normal Establishment Page The normal establishment procedures de-
scribed in section 5.1 of RFC 4960 are modelled in the Normal’Establish page
shown in Fig. 9. Five transitions represent a sequence of actions directly map-
ping from the message sequence chart in Fig. 3 (a). In addition to sending
outgoing chunks and changing states, SCTP nodes validate VTAG fields and
populates the values of Tie-Tags into the cookie and TCB. The guard on transi-
tion Rcv Init requires the VTAG of the Init chunk to be equal to zero. According
to last paragraph of section 5.2.2 page 67 of RFC 4960 [4], the value of Tie-
Tags in CLOSED, COOKIE-WAIT and SHUTDOWN-ACK-SENT shall be set
to zeros. Thus the Tie-Tags in the InitAck chunk and in TCB of COOK-WAIT
state are set to zeros.

Normal Shutdown Page Figure 10 shows a CPN page of the normal grace-
ful shutdown procedures described in section 9.2 of RFC 4960. Despite the
normal shutdown procedure shown in Fig. 3 (b) comprising only SHUTDOWN
primitives and three-way handshakes, the Normal’Shut Down page contains 9
transitions. Unlike association establishment, section 9.2 of RFC 4960 does not
separate the normal closing down and unexpected closing down procedures.
Hence, in addition to the typical actions of SHUTDOWN primitives and three-
way handshakes, this page includes

1) Clearing outstanding data when receiving Data chunks in SHUTDOWN-
PENDING and SHUTDOWN-RECEIVED;

2) Retransmitting Shutdown chunks when receiving Data chunks in the
SHUTDOWN-SENT state;

3) Receiving Shutdown chunks in the SHUTDOWN-RECEIVED state.

4.4 CPN Models of Unexpected Procedures

Handling unexpected receptions of SCTP control chunks is modelled by three
CPN pages: Unexpected’Int IntAck, Unexpected’CookieEcho CookieAck, and Un-
expected’Shutdown. These are illustrated in this section.

������������� �	
 � ���� �
�� ���
 ����� � ��� ���� ���� ������������� � �
 �������������! � �	� �"#�$�������%&�� �'����(��� �"$
��� � ��� ���� �)���� � ��! ����&�� �� ������&* ���� ���� ����
� ��+ ������,�- �	� ��)�&,.�)���� �'����/�)����� �����&*����� ��)���� � ����������� �!� � �	� �.�)���.�)��

�.�)���.�)�� &))���&�� ���� �/� ��������&�

����&��
�����
��� � ����)�����	
 �� � ��� ��,�- �	� ��)�&,.�)�����'����/�)���� � �)�����	
 ��)���� � �)�����	
 �!�� �	� ������������� �	
� ���� � ������� ����
��� � �������!����&�� ����
 ���� � �������!�� ��
 ���� � ��� ���� ����������������� ��'����/�)��������� ���� � �
 ���� ��)���� � ��!� ���� �� �	� �������%&�� �'����(��� � "$
��� � ��� ���� �)����� ��!
���� �
��� � ���� �����&�� ��������� � ��������0�� �� ������&*����������0 � ���� �� �������/�/�!!�������%&���'��� � /� "$
��� � ��������&�)���� � �/� /�!

'�
�����&��'����������'�
�����&��1��
 ���� � ��� ���� 2
&))���&���3'�4'�
�����1
��� �/2

5	�(�� ��44&6�

���� ��56�

�7��7� ��56�
��,�8� ��,�8�

�7�

��

��

Fig. 9. The Normal’Establish page.

���� ��������	
�� ����� � �� �
�������� ���������� ��� �������	
�� ��������������� �� �����	
�� ��������������� !"�� #$������# ��������� �� ����� # ��������� �%� ���� ����

����	
�� ����� � �� �
& ����� #���������'�(����� ����)�������� # �*���������� �� ����)�� � # ���++� �,)������ # ��������� ��� �� ����)�� � # ������ ����)������ -. $ � ��� �/����)� ����	
�� ����� � �� � ����������01)� �� ����� �
��������'"2 ������������� �������������01)�����++���������� �������/���� ��������'"2 ��������	
�� ��������������� �� �

����	
�� ����������3���4�5� �� �

����	
�� ����������!���4���� ���
����	
�� ����'�/4����� �� �����	
�� ����������!���4���� ���

����	
�� �������������� � !"��#$� �����# ��������� �� ����� # ��������� �%�
����	
�� ��"6�	
������� � �� � ��������

����	
�� ����������'�(����� � !"��#$� �����# ������ ����� �����# �$�$�%�
�������� ������������ ��������	
�� ����������!���4���� �� �

�������� ������������� ���
����	
�� ����������3���4�5 � �� � �)�,
����������27����� #���������3���4�5�,)� ���� #���������!���4����8

!"�����
������������7���� # �*������� ��� ������)�� ���� -. $8

!"�����������01)�!"���������'"27���� # �*������� ��� ������)�� ���� -. $8�����������'"2!����������4����������!���4���!"���������7���� # �*���������� ������)�� ���� -. $8

���������3!497�"6�	
������� -.���������!���4���8
�����������

��,4� ��99'��

4�4�����(

������ ����(

��� 4:����4:�
���

4�

4�

Fig. 10. The Normal’Shut Down page.

Unexpected Init and InitAck Page Figure 11 shows the CPN page deal-
ing with the unexpected events of receiving Init and InitAck chunks in states
other than CLOSED. Transitions RcvInit CK WAIT and RcvInit CK ECHOED
model the actions according to section 5.2.1 of RFC 4960 [4] when an endpoint
receives an Init chunk in the COOKIE-WAIT or COOKIE-ECHOED state.
The difference between these actions is that the Tie-Tags from the COOKIE-
WAIT state are set to zeros but from COOKIE-ECHOED, they are set to the
current verification tags. Transitions Rcv InitOtherThan models the action ac-
cording to section 5.2.2 of RFC 4960 when the endpoints receive unexpected
Init chunks in states other than CLOSED, COOKIE-WAIT and COOKIE-
ECHOED. The action is similar to that of transition RcvInit CK ECHOED but
the “my verification tag” in the cookie and Initial Tag in the InitAck chunk
are set to a new value instead of the old value of the Initial tag (InitTag Z).
Transition RcvInit in SHUTDOWN ACK SENT models the action according to
the sixth paragraph of section 9.2 of RFC 4960. After receiving an Init chunk in
SHUTDOWN-ACK-SENT, the SCTP node discards the Init chunk but retrans-
mits a ShutdownAck chunk. Transition Rcv InitAck models the action according
to section 5.2.3 of RFC 4960. The SCTP node silently discards any unexpected
InitAck chunks if receiving them in states other than COOKIE-WAIT

Unexpected CookieEcho and CookieAck Page Figure 12 shows the CPN
page dealing with the unexpected events of receiving CookieEcho chunks in
states other than CLOSED; and receiving CookieAck in states other than
COOKIE-ECHOED. When receiving CookieAck in states other than COOKIE-
ECHOED, (transition Rcv CookieAck), the SCTP node silently discards the

����� ��� �	
����������	���� �� � 	���������� �����	 � ���� ���!��� ���"# � ��"#�
��!����
�� ��� � �����$ � !��� ���"# � ��"# �!������ % ! & ���"# � �'��	 � ���� ������ & %�����(&���' ��	 � � ��� ���� ��"# �������& ��	 � ���� ��))��!����
�� �%*���& �*������ ��	 � � & �	 � ���� ��	 ��� & �	 � ���� �)� �����$ �

!������ % !&���"# � �+,��"# �������" �� �����&%�����(&��+,��"#�������" �� �� ��"#�������&�-� -�))!��� ���"# � ��"#���!����!� ������" ��
����� ��� ���"�$ �%*���&.��� � 	 � �&/0�"# �	 ���& /0�"#)� !������ % ! & ���"# � �$���"#���� & %�����(&��$���"# � ��"#�������& /0�"#))!��� ���"# � ��"# �

!������ � ��"#1�����$"�,���"�$
����� ��� ���"�$ �%*���&.��� � 	 � �&/0�"# � 	 ���&��)� *��!���� ���	
����������	���2��"# & -3

*��!���������!�2��"# & -3
*��!���������
��2��"# & -3

*���!������2��� ����4�5���!����!��"�,���"�$ ��3
*���!�����$.��"�2��"# & - "��" /�� ��"�$67 	
����������	���3

!�!� �
���

���� �
���
���!8���!8

��

!�
Fig. 11. The Unexpected’Init InitAck page.

CookieAck chunk. Four substitution transitions, Restart, Simultaneous Open,
Delayed Cookie and Tags match, model the actions described in section 5.2.4 of
RFC 4960. While we modeled this CPN page, we found an error2 in Table 2
of section 5.2.4 of RFC 4960. The column headers of the Table, “Local Tag”
should be “Local verification tag in the received cookie” and “Peer’s tag” should
be “Peer’s verification tag in the received cookie”.

��������� ���	
���	 ���������	
���	���� ������������������������������� ���
������	
������
 !"�����!���#���
 !"�����!���#��
������	
���������� ��������� ����������	
�������� "��$����	
��� "���$����	
�
������	
���������� %������ %�

���� ��&'�

�!��!� ��&'�����(�����(�
�!�

��

����� %�
�� "���$����	
������ ����

�
 !"�����!���#��

Fig. 12. The Unexpected’CookieEcho CookieAck page.

Unexpected Shutdown Page This CPN page represents the events when
a SCTP endpoint unexpectedly receives shutdown control chunks (Shutdown,
ShutdownAck and ShutdownComplete). The states in the establishment phase,
COOKIE-WAIT and COOKIE-ECHOED, should not receive the shutdown
control chunks. SHUTDOWN-SENT should not receive the Shutdown chunk.
SHUTDOWN-ACK-SENT should not receive the ShutdownAck chunk. The
reception of shutdown control chunks in CLOSED is modelled by the first
transition. The second, third and fourth transitions model the receptions of
Shutdown, ShutdownAck and ShutdownComplete respectively in the COOKIE-
WAIT and COOKIE-ECHOED states. When a node receives ShutdownAck in
either COOKIE-WAIT or COOKIE-ECHOED, the node replies with Shutdown-
Complete. The T-Flag is set and the VTAG of the outgoing packet is set equal
to the VTAG of the incoming packet.

The fifth transition models the reception of a Shutdown chunk in the
SHUTDOWN-SENT state. The node replies with ShutdownAck and enters the
SHUTDOWN-ACK-SENT state. The sixth transition represents the reception

2 See Transport Area Discussion Archive
http://www.ietf.org/mail-archive/web/tsvwg/current/msg08603.html.

� ����� ��� 	

� ����� �� ���������� ��� ��������� ��� ���� ��� 	
�� �	� �� �� !"�
�# $�%� &�� 	$� �'(� ��)*������) ������ ��� �� �����) �*�*�+��� �	� �� �� !"�
�# $�� 	$� � �� � � ����� �%� � ���������� ��� ���� ����� � ��,-, �.���,�� � ����� �� ������ �� ���,- �
� ����� �� ������ ���� $���,- �� ����� �%� � ��,-, �.���,��

�� �	� �� �� !"�
�# $�%� &�� 	$� � �� � � ����� �%� � ��,-

� ����� � ��,-, �.���,�� (���� ����� ���� ��� ��� 	
/� !"$&01�� ����� ��� ����� 2� ���� !"$&01�� ����� �%� ��� ����� 2� ���� !"$&01�� ����� �� ������ �� �����3

(��� ����� �� ��� !"�
�# $�� 	$�/��,-) �4������� ��� ��, ��, �� ��,- 56 *3
(��� ����� �%� �� ��� &�#%7��� &	� !� 	
/�� �01���� &7 	�#%7� �, �.���,�� � 2� ����� �01���� &7	� 	� !� 	
�, �.���,�� �3

(��� ����� �� ������ ��� &�#%7��� &� 	� !� 	
/�� �01���� &7 	�#%7� �, �.���,�� � 2� ����� �01���� &7 	� 	� !� 	
�, �.���,�� �3
(��� ����� �%� � �� ����� �%� ��� ��/��,-) �4������� ��� ��, ��, �� ��,- 56 *3

(��� ����� �� ��� &�#%7��� &	� !� 	
/�� �01���� &7 	�#%7� �, �.���,�� � 2� ����� �01���� &7 	� 	� !� 	
�, �.���,�� �3

7 �7 � � !"$&

� ��� �� � !"$&
�� �78� �� �78�

� ��

7 �
Fig. 13. The Unexpected’Shutdown page.

of a ShutdownAck chunk in the SHUTDOWN-ACK-SENT state. The node
replies with ShutdownComplete and goes to CLOSED.

5 Analysis of DCCP-CPN Connection Management Model

5.1 Initial configuration

We analyse our SCTP connection management model using CPN Tools version
2.2.0 on an AMD Athlon 1.79 GHz computer with 2GB RAM. The SCTP-CPN
model is initialised by distributing initial tokens to places User A and User Z.
TCB A and TCB Z of the model to create the initial marking. Table 2 shows
the initial values of the user commands and TCB. All channel places are empty.
All initial tags used during association establishment are randomly generated.

We analyse five cases. Case A is association establishment. Both node A
and Z are initially in CLOSED. The user of node A issues an “ASSOCIATE”
command to start an association. Case B is simultaneous establishment, where
both sides attempt to initiate the association at about the same time. Case C
is graceful shutdown. Both sides are in ESTABLISHED, and the user at node
A issues a SHUTDOWN command. Case D is simultaneous graceful shutdown
when both sides try to close the association at about the same time. Case E
is ungraceful abort. Both sides are in ESTABLISHED, and the user at node A

Initial Markings in place
Case User A User Z TCB A TCB Z
A 1‘ASSOCIATE CLOSED CLOSED
B 1‘ASSOCIATE 1‘ASSOCIATE CLOSED CLOSED
C 1‘SHUTDOWN TCBExist (ESTABLISHED, TCBExist (ESTABLISHED,
D 1‘SHUTDOWN 1‘SHUTDOWN {Rcnt=0,SV VT=(2,3) {Rcnt=0, SV VT=(3,2)
E 1‘ABORT SV TT=(2,3)}) SV TT=(3,2)})

Table 2. Initial Configurations.

issues an ABORT command. The initial markings for these cases are shown in
Table 2.

5.2 Analysis Results

The analysis results of our SCTP Connection Management CPN model using
the initial configurations in Table 2 are shown in Table 3. The 4-tuple in the first
column is the maximum retransmissions allowed for Init, CookieEcho, Shutdown
and ShutdownAck respectively. An “x” indicates that the retransmission of
those chunk types does not occur in that configuration. The state space tool
(in CPN Tools) provides the number of nodes, arcs and terminal markings. In
all cases (A to E) in Table 2 the number of nodes and arcs in the Strongly
Connected Component (SCC) Graph are the same as the number of nodes and
arcs in the state space. Thus no livelocks are found.

We classify the terminal markings into four categories based on the SCTP
endpoint states:

TYPE-I CL-CL: both sides terminate in CLOSED.
TYPE-II EST-EST: both sides terminate in ESTABLISHED.
TYPE-III CL-EST: node A terminates in CLOSED but node Z in ESTAB-

LISHED.
TYPE-IV EST-CL: node A terminates in ESTABLISHED but node Z in

CLOSED.
Cases C to E in Table 2 are when the association is terminated. All terminal

markings of cases C to E are TYPE-I (CLOSED-CLOSED) which is desirable,
and no other deadlocks are found. Case D has three terminal markings because
there is the possibility of one user command token (SHUTDOWN) remaining
in either place User A or User Z.

Case A and B are when SCTP’s nodes attempt to establish an association.
TYPE-I terminal marking (CLOSED-CLOSED) is a desirable terminal marking
when the association can not be established thus both sides go to CLOSED state
(No connection). TYPE-III and TYPE-IV terminal markings occur when one
side is in ESTABLISHED while the other is in CLOSED. This can happen when
the maximum number of retransmissions of the CookieEcho chunk is reached
and the node enters CLOSED before CookieAck arrives. An example of this
scenario is shown in Fig. 14. Although TYPE-III and TYPE-IV are unwanted,
they are not harmful. This is because when the peer is considered unreachable,
SCTP will report the failure to its user so that the user may decide to re-initiate

Case Nodes Arcs Time Terminal Markings
(sec) (I)CL-CL (II)EST-EST (III)CL-EST (IV)EST-CL

A-(0,0,x,x) 12 13 0 1 1 1 0
A-(1,0,x,x) 38 58 0 1 2 2 0
A-(0,1,x,x) 20 26 0 1 1 1 0
A-(1,1,x,x) 78 147 0 1 2 2 0
A-(2,2,x,x) 345 905 1 1 2 2 0
A-(3,3,x,x) 1,124 3,535 1 1 2 2 0

B-(0,0,x,x) 380 756 0 1 16(11) 4 4
B-(1,0,x,x) 8,206 25,778 41 1 36(20) 7 7
B-(0,1,x,x) 1,087 2,498 1 1 16(11) 4 4
B-(1,1,x,x) 31,295 113,302 579 1 36 (20) 7 7

C-(x,x,0,0) 14 20 0 1 0 0 0
C-(x,x,1,0) 28 50 0 1 0 0 0
C-(x,x,0,1) 22 36 0 1 0 0 0
C-(x,x,1,1) 45 87 0 1 0 0 0

D-(x,x,0,0) 106 234 0 3 0 0 0
D-(x,x,1,0) 415 1,178 0 3 0 0 0
D-(x,x,0,1) 253 598 0 3 0 0 0
D-(x,x,1,1) 1,125 3,604 1 3 0 0 0
D-(x,x,2,2) 6,024 22,294 16 3 0 0 0

E-(x,x,x,x) 3 2 0 1 0 0 0

Table 3. State space analysis results.

the ASSOCIATE command. Thus the association can be restored as described
in Fig. 5 of RFC 4960.

 Node A Node Z
 CLOSED CLOSED

 [ASSOCIATE]
 Init (vtag=0, itag=Ax)
 COOKIE_WAIT
 (itag=Ax)

 InitAck (vtag=Ax, itag=Zx, CK[Zx.Ax])

COOKIE_ECHOED
 (my vtag=Ax, CookieEcho (vtag=Zx, CK([Zx.Ax])

 peer’s vtag =Zx) CLOSED

 Time-out
 CLOSED CookieAck (vtag=Ax) ESTABLISHED
 (my vtag=Zx,
 peer’s vtag = Ax)

Fig. 14. A scenario leads to a terminal marking TYPE III (half open state).

TYPE-II terminal markings should be desirable when both sides successfully
establish the association. However when we check the verification tags stored in
the TCBs, some terminal markings of TYPE-II are undesirable. #1SV VT in
TCB A must equal #2SV VT in TCB Z and vice versa, otherwise all received
data packets will be discarded. In column TYPE-II, the number in parenthesis
is the number of TYPE-II terminal markings in which verification tags between
both TCBs match each other. For example, in case B(0,0,x,x), eleven terminal
markings of TYPE-II have verification tags matched to each other.

 Node A Node Z
 CLOSED CLOSED

 [ASSOCIATE]
 Init (vtag=0, itag=A1)
 COOKIE_WAIT
 (itag=A1)

 InitAck(vtag=A1,itag=Z1,CK[Z1.A1])

COOKIE_ECHOED CookieEcho (vtag=Z1, CK[Z1.A1])
 (my vtag=A1, [ASSOCIATE]
 peer’s vtag =Z1)

 Time-out Init (vtag=0, itag=Z2) COOKIE_WAIT
 CLOSED (itag=Z2)
 InitAck(vtag=Z2, itag=A2, CK[A2.Z2])

 CookieEcho(vtag=A2,CK[A2.Z2]) COOKIE_ECHOED
 (my tag=Z2,
 ESTABLISHED peer’s tag =A2)
 (my tag=A2, CookieAck vtag=Z2 Time-out
peer’s tag =Z2) CLOSED

 ESTABLISHED
 (my tag=Z1,
 CookieAck vtag=A1 peer’s tag =A1)

Fig. 15. A scenario when both sides reach ESTABLISHED with mismatched verification tags.

According our investigation, one cause of this problem is shown in Fig. 15.
Node A starts initiating the association. The setup sequence proceeds accord-
ing to the typical scenario but the CookieEcho chunk from node A is delayed.
While waiting for CookieAck, node A reaches the maximum number of retrans-
mission of the CookieEcho chunk, thus node A goes to CLOSED. Meanwhile
after replying InitAck, node Z initiates the association establishment (simulta-
neous establishment) using a different set of verification tags. Similar to node A,
while waiting for CookieAck, node Z retransmits the maximum number of re-
transmission of CookieEcho chunks, and goes to CLOSED. After both sides are
in CLOSED, CookieEcho’s arrive at both sides. Both sides process the cookies
and authenticate the State Cookie if it is the one that it has just generated. Both
sides create their TCBs from the received cookies and go to ESTABLISHED
with mismatched verification tags. Notice that this problem does not relate to
Tie-Tags mechanism or section 5.2 of RFC 4960.

6 Conclusions and future work

This paper has presented a Coloured Petri Nets model and analysis of SCTP
connection management. Our CPN model is based on the recent RFC 4960
rather than the obsolete RFC 2960. Besides the typical association establish-
ment, graceful shutdown and abort, our CPN model includes the procedures for
handling the reception of unexpected control chunks. In particular we attempt
to model the use of Tie-Tags from RFC 4960 that differs significantly from the
description in RFC 2960.

We build the procedure-based CPN model of SCTP connection management
directly from RFC 4960. It took about two months (part time) to study the
SCTP procedures, create the model and debug the model. The most critical
problem of this project is to understand how to use Tie-Tags. When SCTP
receives a CookieEcho chunk in the states other than CLOSED (section 5.2.4

of RFC 4960), Tie-Tags are used to identify complex scenarios such as an asso-
ciation restart and simultaneous establishment. Although we found an error in
section 5.2.4 of RFC 4960 while we developed the SCTP-CPN model, to gain
an insight into these complex scenarios requires more exhaustive analysis and
more time.

Our initial state space analysis shows that the shutdown procedures have
no deadlocks but the establishment procedures have undesired deadlocks. The
undesired deadlocks are half open states, where one SCTP node is in CLOSED
while the other is in ESTABLISHED. This deadlock could be easily solved by
restarting the association. When the maximum number of retransmissions has
been reached, SCTP must report to its user. Then the user can restart the
association.

The second problem seems more severe because both sides are in ESTAB-
LISHED with mismatched verification tags stored in their TCB. As far as we
aware there is no existing discussion of this problem. The solution to the second
problem seems to involve cookie authentication, which needs further investiga-
tion. In future, we are interested in modelling security attacks against SCTP
as well as multi-homing.

Acknowledgments The author are thankful to the anonymous reviewers and
also to Professor Jonathan Billington and Dr. Guy Gallasch. Their constructive
feedback has helped to improve the quality of this paper.

References

1. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency
and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 210–290. Springer, Heidelberg, 2004.

2. J. Billington and S. Vanit-Anunchai. Coloured Petri Nets Modelling of an Evolving Internet
Standard: the Datagram Congestion Control Protocol . Fundamenta Informaticae, In Press,
2008.

3. M. Martins M. G. Modelagem e Análise Formal de algumas Funcionalidades de um
Protocolo de Transporte Atrvés das Redes de Petri. Master’s thesis, Instituto Nacional
de Telecomunicações (INATEL) , Santa Rita do Sapucáı, Brazil, December 2003.

4. R. Stewart Ed. Stream Control Transmission Protocol (SCTP), RFC4960. Available via
http://www.rfc-editor.org/rfc/rfc4960.txt, September 2007.

5. R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, M. Tuexen. Stream Control Transmission
Protocol (SCTP) Specification Errata and Issues, RFC4460. Available via http://www.rfc-
editor.org/rfc/rfc4460.txt, September 2007.

6. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M.
Kalla, L. Zhang and V. Paxson. Stream Control Transmission Protocol (SCTP), RFC2960.
Available via http://www.rfc-editor.org/rfc/rfc2960.txt, October 2000.

7. S. Vanit-Anunchai and J. Billington. Modelling the Datagram Congestion Control Pro-
tocol’s Connection Management and Synchronisation Procedures. In J. Kleijn and
A. Yakovlev, editors, Proceedings of the 28th International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency (ICATPN’07), volume 4546 of Lec-
ture Notes in Computer Science, pages 423–444, Siedlce, Poland, 25-29 June 2007. Springer,
Heidelberg.

8. S. Vanit-Anunchai, J. Billington, and G.E. Gallasch. A Combined Protocol Channel Model
and its Application to the Datagram Congestion Control Protocol. In D. Moldt N. Sidorova
and H. Rolke, editors, Proceeding of the International Workshop on Petri Nets and Dis-
tributed Systems (PNDS08), pages 32–46, Xian, China,, 23-24 June 2008.

