Hardness Test

Subjects of interest

• Introduction/objectives
• Brinell hardness
• Meyer hardness
• Vickers hardness
• Rockwell hardness
• Microhardness tests
• Relationship between hardness and the flow curve
• Hardness-conversion relationships
• Hardness at elevated temperatures
Objectives

• This chapter provides fundamental knowledge of hardness of materials along with different methods of hardness measurements normally used.

• Relationships between hardness and tensile properties will be made and finally factors affecting hardness of metals will be discussed.
Introduction

Definition

Hardness is a resistance to deformation.

(for people who are concerned with mechanics of materials, hardness is more likely to mean the resistance to indentation)

Hardness impression

Deeper or larger impression

Softer materials
Introduction

There are three general types of hardness measurements

1) Scratch hardness
 • The ability of material to scratch on one another
 • Important to mineralogists, using Mohs’ scale: 1 = talc, 10 = diamond
 • Not suited for metal → annealed copper = 3, martensite = 7.

2) Indentation hardness
 • Major important engineering interest for metals.
 • Different types: Brinell, Meyer, Vickers, Rockwell hardness tests.

3) Rebound or Dynamic hardness
 • The indentor is dropped onto the metal surface and the hardness is expressed as the energy of impact.
Introductions

- Hardness tests can be used for many engineering applications to achieve the basic requirement of mechanical property.

- **For examples**
 - surface treatments where surface hardness has been much improved.
 - Powder metallurgy
 - Fabricated parts: forgings, rolled plates, extrusions, machined parts.

[Image of a nitrided part]

[Graph showing hardness variation of nitrided part]

Tapany Udomphol

Suranaree University of Technology

May-Aug 2007
Brinell hardness

- **J.A. Brinell** introduced the *first standardised indentation-hardness* test in 1900. The **Brinell hardness test** consists in indenting the metal surface with a **10-mm diameter steel ball** at a load range of 500-3000 kg, depending on hardness of particular materials.

- The load is applied for a standard time (~30 s), and the **diameter of the indentation is measured**. → giving an average value of two readings of the diameter of the indentation at right angle.

- The **Brinell hardness number (BHN or H_B)** is expressed as the load **P** divided by surface area of the indentation.

\[
BHN = \frac{P}{\left(\pi D / 2\right)\left(D - \sqrt{D^2 - d^2}\right)} = \frac{P}{\pi D t}
\]

Eq.1

Where
- **P** is applied load, kg
- **D** is diameter of ball, mm
- **d** is diameter of indentation, mm
- **t** is depth of the impression, mm

Unit kgf.mm⁻² = 9.8 MPa
Advantages and disadvantages of Brinell hardness test

• Large indentation averages out local heterogeneities of microstructure.

• Different loads are used to cover a wide rage of hardness of commercial metals.

• Brinell hardness test is less influenced by surface scratches and roughness than other hardness tests.

• The test has limitations on small specimens or in critically stressed parts where indentation could be a possible site of failure.

Brinell hardness impression

\[
HB = \frac{2F}{\pi D (D - \sqrt{D^2 - d^2})}
\]
Brinell hardness test with nonstandard load or ball diameter

• From fig, \(d = D \sin \phi \), giving the alternative expression of Brinell hardness number as

\[
BHN = \frac{P}{(\pi / 2)D^2 (1 - \cos \phi)} \quad \text{Eq. 2}
\]

• In order to obtain the same \(BHN \) with a non-standard load or ball diameter, it is necessary to produce a geometrical similar indentations.

• The included angle \(2\phi \) should remain constant and the load and the ball diameter must be varied in the ratio

\[
\frac{P_1}{D_1^2} = \frac{P_2}{D_2^2} = \frac{P_3}{D_3^2} \quad \text{Eq. 3}
\]

Basic parameter in Brinell test
• **Meyer** suggested that hardness should be expressed in terms of the *mean pressure between the surface of the indenter and the indentation*, which is equal to the load divided by the projected area of the indentation.

\[
\frac{P}{\pi r^2} \quad \text{Eq. 4}
\]

• **Meyer hardness** is therefore expressed as follows;

\[
\text{Meyer hardness} = \frac{4P}{\pi d^2} \quad \text{Eq. 5}
\]

Note:
- Meyer hardness is less sensitive to the applied load than Brinell hardness.
- Meyer hardness is a more fundamental measure of indentation hardness but it is rarely used for practical hardness measurement.
Vickers hardness

- **Vickers hardness test** uses a *square-base diamond pyramid* as the indenter with the included angle between opposite faces of the pyramid of 136°.

- The **Vickers hardness number** (*VHN*) is defined as the load divided by the surface area of the indentation.

\[
VHN = \frac{2P \sin(\theta/2)}{L^2} = \frac{1.854P}{L^2}
\]

Note: not widely used for routine check due to a slower process and requires careful surface preparation.

Where

- \(P \) is the applied load, kg
- \(L \) is the average length of diagonals, mm
- \(\theta \) is the angle between opposite faces of diamond = 136°.

Note: the unit can be VHN, DPH, H_

Suranaree University of Technology

Tapany Udomphol

May-Aug 2007
Vickers hardness

- **Vickers hardness test** uses the loads ranging from 1-120 kgf, applied for between 10 and 15 seconds.
- Provide a fairly **wide acceptance for research work** because it provides a continuous scale of hardness, for a given load.
- **VHN = 5-1,500** can be obtained at the same load level → **easy for comparison**.
Impressions made by Vickers hardness

- **A perfect square indentation (a)** made with a perfect diamond-pyramid indenter would be a *square*.

- **The pincushion indentation (b)** is the result of sinking in of the metal around the flat faces of the pyramid. This gives an overestimate of the diagonal length (observed in *annealed metals*).

- **The barrel-shaped indentation (c)** is found in *cold-worked metals*, resulting from ridging or piling up of the metal around the faces of the indenter. Produce a low value of contact area → *giving too high value*.
Vickers hardness values of materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>H_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>5</td>
</tr>
<tr>
<td>Aluminium</td>
<td>25</td>
</tr>
<tr>
<td>Gold</td>
<td>35</td>
</tr>
<tr>
<td>Copper</td>
<td>40</td>
</tr>
<tr>
<td>Iron</td>
<td>80</td>
</tr>
<tr>
<td>Mild steel</td>
<td>230</td>
</tr>
<tr>
<td>Full hard steel</td>
<td>1000</td>
</tr>
<tr>
<td>Tungsten carbide</td>
<td>2500</td>
</tr>
</tbody>
</table>

http://www.brycoat.com/hardness.htm
Rockwell hardness

- The most widely used hardness test in the US and generally accepted due to:
 1) Its speed
 2) Freedom from personal error.
 3) Ability to distinguish small hardness difference
 4) Small size of indentation.

- The hardness is measured according to the depth of indentation, under a constant load.
Rockwell hardness test

Principal of the Rockwell Test

- Position the surface area to be measured close to the indenter.
- Applied the *minor load* and a zero reference position is established.
- The *major load* is applied for a specified time period (dwell time) beyond zero.
- The *major load* is released leaving the minor load applied.

The dial contains 100 divisions, each division representing a penetration of 0.002 mm.

![Diagram of Rockwell hardness test]

The Rockwell number represents the difference in depth from the zero reference position as a result of the applied major load.
Rockwell hardness scale

- **Rockwell hardness number (RHN)** represents in different scale, A, B, C,... depending on types of indenters and major loads used.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Indenter</th>
<th>Load (kg.f)</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Brale</td>
<td>60</td>
<td>HRA</td>
</tr>
<tr>
<td>B</td>
<td>1/16” steel ball</td>
<td>100</td>
<td>HRB</td>
</tr>
<tr>
<td>C</td>
<td>Brale</td>
<td>150</td>
<td>HRC</td>
</tr>
</tbody>
</table>

EX: The scale is usable for materials from annealed brass to cemented carbides. Other scales are available for special purposes.

- The Hardened steel is tested on the **C scale** with \(R_c 20-70 \).
- Softer materials are tested on the **B scale** with \(R_b 30-100 \).
Rockwell hardness instruction

• Cleaned and well seated indenter and anvil.
• Surface which is clean and dry, smooth and free from oxide.
• **Flat surface**, which is perpendicular to the indenter.
• Cylindrical surface gives **low readings**, depending on the curvature.
• **Thickness** should be 10 times higher that the depth of the indenter.
• The **spacing between the indentations** should be 3 or 5 times the diameter of the indentation.
• **Loading speed** should be standardised.
Microhardness

• Determination of hardness over very small areas for example individual constituents, phases, requires hardness testing machines in micro or sub-micro scales.

• Vickers hardness can also be measured in a microscale, which is based on the same fundamental method as in a macroscale.

• The Knoop indenter (diamond-shape) is used for measuring in a small area, such as at the cross section of the heat-treated metal surface.

• The Knoop hardness number (KHN) is the applied load divided by the unrecovered projected area of the indentation.

\[
KHN = \frac{P}{A_p} = \frac{P}{L^2 C}
\]

Where

- \(P \) = applied load, kg
- \(A_p \) = unrecovered projected area of indentation, mm\(^2\)
- \(L \) = length of long diagonal, mm
- \(C \) = a constant for each indenter supplied by manufacturer.

Suranaree University of Technology

Tapany Udomphol

May-Aug 2007
Plastic zone underneath an indenter

- The **plastic zone** underneath a **harness indentation** is surrounded with elastic material, which acts to **hinder plastic flow**.
- The material surrounding the deformed zone is rigid and **upward flow** of material compensates for the material displaced by the punch.
- The **compressive stress** required to cause **plastic flow** in the hardness test > that in the simple compression due to this **constraint**.
Relationship between hardness and the flow curve

- Tabor suggested a method by which the plastic region of the true stress-strain curve may be determined from indentation hardness measurement.

- This is under a condition such that the true strain was proportional to the d/D ratio ($\varepsilon = 0.2d/D$).

\[\sigma_o = \frac{VHN}{3}(0.1)^n \]

Eq.8

Where σ_o is the 0.2% offset yield strength, kgf.mm\(^{-2}\)(=9.81 MPa)

VHN is the Vickers hardness number

n is the work hardening exponent.
Relationship between hardness and the flow curve

• For Brinell hardness, a very useful correlation has been used for heat-treated plain-carbon and medium-alloy steels as follows:

\[UTS(MPa) = 3.4(BHN) \]

Eq.9

• Furthermore, Young’s modulus can also be given from the nano-hardness test.
Hardness conversion relationships

- Hardness conversions are *empirical relationships* for Brinell, Rockwell and Vickers hardness values.
- This hardness conversions are applicable to heat-treated carbon and alloy steels in many heat treatment conditions. (or alloys with similar elastic moduli).
- For *soft metals*, indentation of hardness depends on the strain hardening behaviour of the materials.
- Special hardness-conversion tables for cold-worked aluminium, copper, and 18-8 stainless steel are given in the *ASM Metals Handbook*.
Hardness at elevated temperatures

- **Hot hardness** gives a good indication of potential usefulness of an alloy for *high-temperature strength applications*.
- Hot hardness testers use a **Vickers indenter** made of sapphire and with provisions for testing in either vacuum or an inert atmosphere.
- The temperature dependence of hardness could be expressed as follows;

\[H = Ae^{-BT} \]

Eq. 10

Where
- \(H \) = hardness, kgf.mm\(^{-2} \)
- \(T \) = test temperature, K
- \(A, B \) = constants
Hardness at elevated temperatures

Log H VS temperature curve provides two slopes, having the turning point about one-half of the melting point of the material.

- BCC metals are softer in an allotropic transformation where FCC and HCP metals have approximately the same strength.

Temperature dependence of the hardness of copper
References