Chapter 4

4-8. A piston-cylinder device initially contains $0.07 \mathrm{~m}^{3}$ of nitrogen gas at 130 kPa and $120^{\circ} \mathrm{C}$. The nitrogen is now expanded polytropically to a state of 100 kPa and $100^{\circ} \mathrm{C}$. Determine the boundary work done during this process.

4-15. During an expansion process, the pressure of a gas changes from 100 to 700 kPa according to the relation $P=a V+b$, where $a=1220 \mathrm{kPa} / \mathrm{m}^{3}$ and b is a constant. If the initial volume of the gas is $0.2 \mathrm{~m}^{3}$, calculate the work done during the process. Answer: 197 kJ

4-33. A well-insulated rigid tank contains 5 kg of a saturated liquid-vapor mixture of water at 100 kPa . Initially, three-quarters of the mass is in the liquid phase. An electric resistor placed in the tank is connected to a $110-\mathrm{V}$ source and a current of 8 A flows through the resistor when the switch is turned on. Determine how long it will take to vaporize all the liquid in the tank. Also, show the process on a $T-v$ diagram with respect to saturation lines.

4-37. An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa . Water is stirred by a paddle wheel while a current of 8 A flows for 45 min through a resistor placed in the water. If one-half of the
liquid is evaporated during this constant pressure process and the paddle-wheel work amounts to 400 kJ , determine the voltage of the source. Also, show the process on a P-v diagram with respect to saturation lines. Answer: 224 V

4-62. A rigid tank contains 10 kg of air at 350 kPa and $27^{\circ} \mathrm{C}$. The air is now heated until its pressure doubles. Determine (a) the volume of the tank and (b) the amount of heat transfer. Answer: (a) $2.46 \mathrm{~m}^{3}$, (b) 2207 kJ

4-65. A 0.1 m 3 adiabatic rigid container is devide into two equal volumes by a thin membrane, as shown in fig. P4-65. Initially, one of these chambers is filled with air at 700 kPa and $37{ }^{\circ} \mathrm{C}$ while the other chamber is evacuated. Determine the internal energy change of the air when the membrane is ruptured. Also determine the final air pressure in the container.

4-70. Argon is compressed in a polytropic process with $\mathrm{n}=1.2$ from 120 kPa and $30^{\circ} \mathrm{C}$ to 1200 kPa in a piston - cylinder device. Determine the work produced and heat transferred during this compression process, in $\mathrm{kJ} / \mathrm{kg}$.

4-75. A mass of 15 kg of air in a piston-cylinder device is heated from 25 to $77^{\circ} \mathrm{C}$ by passing current through a resistance heater inside the cylinder. The pressure inside the cylinder is held constant at 300 kPa during the process, and a heat loss of 60 kJ occurs. Determine the electric energy supplied, in kWh.

Answer: 0.235 kWh

4-154. A $3-\mathrm{m} 3$ rigid tank contains nitrogen gas at 500 kPa and 300 K . Now heat is transfer to the nitrogen in the tank and the pressure of nitrogen rises to 800 kPa . The work done during this process is
(a) 500 kJ
(b) 1500 kJ
(c) 0 kJ
(d) 900 kJ
(e) 2400 kJ

