Theory and Design for Mechanical Measurements, Richard S. Figliola, Wiley

Measurement methods

- Introduction
 - Relationship between real value and the value actually measured?
- General Measurement System
- Experimental Test Plan
- Calibration
- Standards
- Presenting Data

General Measurement System

- Sensor-transducer stage
 - Convert the sensed information into a detectable signal
- Signal conditioning stage
 - Modifies to a desired magnitude
- Output stage
 - Indicates or records the value measure
- Feedback control stage
 - Interprets the measured signal and make a decision regarding the control process

Measurement System

Experimental Test Plan

- Parameter Design Plan
 - Test objective and identification of process variables and parameters
- System and Tolerance Design Plan
 - Selected of measurement technique, equipment and test procedure
- Data Reduction Design Plan
 - Analyze, present and use the anticipated datas

Experimental Test Plan

- Variable
 - Independent variable: A variable that can be changed independently of other variables
 - Dependent variable: A variable that is affected by changes in one or more other variables
 - Extraneous variable: Variables that cannot be controlled during measurement, but that affect the value of the variable measured
- Parameters
 - Control parameter: A parameter that has an affect on the behavior of the measured varible
- Noise is random variation of the value of the measured signal as a consequence of the variation of extraneous variable
- Interference imposes undesirable deterministic trends on the measured value

7

Experimental Test Plan

- Random Tests
- Replication and Repetition
- Concomitant Methods

Pressure Calibration System

Figure 1.5 Pressure calibration system.

Source	es of Erro	r in Mea	sureme	nts	Types c	of Errors	
NaturalInstrumPerson	l errors nent errors nal errors				 Systematic errors สาเหตุเกิดจากองค์ประกอบของระบบการ วัด ไม่ว่าจะเป็น สภาวะแวดล้อม เครื่องมือ และ ผู้ทำการรังวัด มีขนาดเปลี่ยนไปตามสภาพของสภาวะ ดังกล่าว มีลักษณะเป็นแบบสะสม (cumulative errors) สามารถหาปริมาณและคำนวณตรวจแก้ได้ 	 Random errors เป็นความคลาดเคลื่อนที่อยู่นอกเหนือการ ควบคุมของมนุษย์ (accidental errors) มีขนาดและทิศทางไม่แน่นอน ไม่สามารถ ตรวจแก้ได้โดยตรง การคำนวฉปรับแก้อาศัยหลักการทางสถิติ และทฤษฎีความน่าจะเป็น เช่น การหา ค่าเฉลี่ย การคำนวฉแบบ least square เป็น ดัน 	
				25		26	
					Stand	andards	
Table 1.6 Voltmeter Calibration Data				Its indicated value is concerned value	ompared directly with a		
Increa	sing Input [mV]	Decreasing I	nput [mV]				
X	Y	X	Y		Dimension		
0.0	0.1	5.0	5.0		- define a physical var	iable that is used to	
1.0	1.1	4.0	4.2				
2.0	2.1	3.0	3.2		describe some aspec	r physical system	
3.0	3.0	2.0	2.2		Unit		
4.0	4.1	1.0	0.2				
2.0	200	v-v	0.2		– define a quantitative	measure of dimension	

Standards Hierarchy of Standards Primary Standard Table 1.3 Hierarchy of Standards" Transfer Standard Primary Standard Maintained as Absolute Unit Standard Local Standard Transfer Standard Used to calibrate Local Standards Used to calibrate Working Standards Local Standard • Working Standard Working Standard Used to calibrate local instruments ^{*} There may be additional intermediate standards between each hierarchy level. The National Institute of Standards and Technology (NIST) 29 30 **Standards** Hierarchy of Standards: Temperature Base Dimensions and their Units Table 1.4 Example of a Temperature Standard Traceability – Mass Standard - Time and frequency Level Method Error [°C]* - Length Fixed thermodynamic points 0 Primary Platinum resistance thermometer ± 0.005 Transfer - Temperature Platinum resistance thermometer Working ± 0.05 - Current ± 0.5 Local Thermocouple Measure of Substance * Typical instrument systematic and random errors. - Luminous Intensity

Standards	Dime	Dimensions and Units		
	Table 1.2 Dimen:	ions and Units*		
Derived Units		Di	mension	
_	Unit	SI	1P	
– Force – Energy – Power	Primary Length Mass Time Temperature Current Substance	meter (m) kilogram (kg) second (s) kelvin (K) ampere (A) mole (mol)	inch (in) pound-mass (lb _m) second (s) rankine (°R) ampere (A) mole (mol)	
 Electrical Dimensions 	Light intensity	candela (cd)	candela (cd)	
	Force Force Voltage Resistance Capacitance Inductance Stress, Pressure Energy Power	newton (N) volt (V) ohm (Ω) farad (F) henry (H) pascal (Pa) joule (J) watt (W)	pound-force (lb) volt (V) farad (F) henry (H) pound-force/inch ² (psi) British thermal unit (BTU) foet pound-force (ft-lb)	
33	^a SI dimensions and u convenience.	nits are the international	standards. IP units are presented for	34

Standards: Time and frequency

One second is define as the time elapsed during 9,192,631,770 periods of the radiation emitted between two excitation levels of the fundamental state of cesium-133

$$1 \,\mathrm{Hz} = \frac{1 \,\mathrm{cycle}}{\mathrm{second}} = \frac{2\pi \,\mathrm{rad}}{1 \,\mathrm{s}}$$

Standards: Length

One meter is defined exactly as the length traveled by light in 1/299,792,458 of a second (velocity of light 299,792,458 m/s)

> 1 ft = 0.3048 m1 in = 0.0254 m

Voltmeter Calibration Data (Random Test)

Voltmeter Calibration Data (Sequential Test)

	Downscale		Upscale		
y(mV)	x (mV)	y(mV)	x (mV)		
0.5	0	0	0		
1.23	1	0.97	1		
2.15	2	1.98	2		
3.03	3	2.98	3		
4.12	4	3.92	4		
5.2	5	4.98	5		
6.12	6	6	6		
7.11	7	6.99	7		
8.12	8	7.97	8		
9.05	9	9.01	9		
10.02	10	10.03	10		

Voltmeter Calibration Data (Random Test)

No.	x (mV)	y(mV)	%Error
1	5	4.85	3.0000
2	5	4.81	3.8000
3	5	4.9	2.0000
4	5	4.82	3.6000
5	5	4.83	3.4000
6	5	4.92	1.6000
7	5	4.86	2.8000
8	5	4.87	2.6000
9	5	4.91	1.8000
10	5	4.83	3.4000
	mean	4.86	2.8
	Sx	0.0392	0.7832

