## CHAPTER 6

## Process Selection and Facility Layout

## Process Selection and System Design.



## Process Selection

$\square$ Variety
How much variety in products or service will the system need to handle?
$\square$ Flexibility
What degree of equipment flexibility will be needed ?
$\square$ Volume
What is the expected volume of output?

## Process Types

$\square$ Job shop

- Small scale
$\square$ Batch
Moderate volume
$\square$ Repetitive/assembly line


Continuous

- High volumes of standardized goods or services
$\square$ Continuous
Very high volumes of non-discrete goods


## Product and Service Processes

| Process Type | Low Volume |  | High Volume |  |
| :--- | :--- | :--- | :--- | :--- |
| Job Shop | Appliance repair <br> Emergency room |  | Commercial <br> baking <br> Classroom <br> Lecture |  |
| Batch |  |  | Automotive <br> assembly <br> Automatic <br> carwash |  |
| Repetitive |  |  |  | Steel Production <br> Water purification |
| Continuous <br> (flow) | Ineffective |  |  |  |

## Product - Process Matrix

| Dimension | Job shop | Batch | Repetitive | Continuous |
| :--- | :---: | :---: | :---: | :---: |
| Job variety | Very High | Moderate | Low | Very low |
| Process <br> flexibility | Very High | Moderate | Low | Very low |
| Unit cost | Very High | Moderate | Low | Very low |
| Volume of <br> output | Very low | Low | High | Very High |

Other issues; scheduling
work-in-process inventory
labor skill

## Process and Product Profiling

$\square$ Process selection can involve substantial investment in

Equipment
Layout of facilities
$\square$ Product profiling: Linking key product or service requirements to process capabilities
$\square$ Key dimensions
Range of products or services

- Expected order sizes
$\square$ Pricing strategies
Expected schedule changes
Order winning requirements


## Automation

$\square$ Automation: Machinery that has sensing and control devices that enables it to operate

Fixed automation

- Programmable automation


## Automation (cont.)

$\square$ Computer-aided design and manufacturing systems (CAD/CAM)
$\square$ Numerically controlled (NC) machines
$\square$ Robot
$\square$ Manufacturing cell
$\square$ Flexible manufacturing systems (FMS)
$\square$ Computer-integrated manufacturing (CIM)

## Facilities Layout

$\square$ Layout: the configuration of departments, work centers, and equipment, with particular emphasis on movement of work (customers or materials) through the systemProduct layoutsProcess layouts
$\square$ Fixed-Position layout
$\square$ Combination layouts

## Objective of Layout Design

$\square \quad$ Facilitate attainment of product quality
$\square \quad$ Use workers and space efficiently
$\square \quad$ Avoid bottlenecks
$\square \quad$ Minimize unnecessary material handling costs
$\square \quad$ Eliminate unnecessary movement of workers or materials
$\square \quad$ Minimize production time or customer service time
$\square \quad$ Design for safety

## Basic Layout Types

$\square$ Fixed-Position layout
$\square$ Product layouts
$\square$ Process layouts
$\square$ Cellular Layouts
$\square$ Service layouts
$\square$ Office layout

- Retail layout

Warehouse layout

## Fixed Position Layouts

$\square$ Fixed Position Layout: Layout in which the product or project remains stationary, and workers, materials, and equipment are moved as needed.
$\square$ Nature of the product dictates this type of layout

- Weight
$\square$ Size
- Bulk
$\square$ Large construction projects


## Fixed Position Layouts (cont.)

$\square$ Typical of projects
$\square$ Equipment, workers, materials, other resources brought to the site
$\square$ Highly skilled labor
$\square$ Often low fixed costs
$\square$ Typically high variable costs


## Product Layout

## Used for Repetitive or Continuous Processing



## Product Layout (cont.)

Flow shop production (Product-oriented layout): seeks the best personnel and machine utilization in repetitive or continuous production.


## Advantages of Product Layout

$\square$ High rate of output
$\square$ Low unit cost
$\square$ Labor specialization
$\square$ Low material handling cost
$\square$ High utilization of labor and equipment
$\square$ Established routing and scheduling
$\square$ Routine accounting, purchasing and inventory control

## Disadvantages of Product Layout

$\square$ Creates dull, repetitive jobs
$\square$ Poorly skilled workers may not maintain equipment or quality of output
$\square$ Fairly inflexible to changes in volume
$\square$ Highly susceptible to shutdowns
$\square$ Needs preventive maintenance
$\square$ Individual incentive plans are impractical

## Process Layout

Process Layout
(functional)

| Dept. A | Dept. C | Dept. E |
| :--- | :--- | :--- |
| Dept. B | Dept. D | Dept. F |

Used for Intermittent processing
Job Shop or Batch Processes

## Process Layout (cont.)

Job shop production (Process-oriented layout): deals with low-volume, high-variety production


## A U-Shaped Production Line



- Ease to cross-travel of workers and vehicles
- More compact
- More communication between workers


## Advantages of Process Layouts

$\square$ Can handle a variety of processing requirements
$\square$ Not particularly vulnerable to equipment failures
$\square$ Equipment used is less costly
$\square$ Possible to use individual incentive plans

## Disadvantages of Process Layouts

$\square$ In-process inventory costs can be high
$\square$ Challenging routing and scheduling
$\square$ Equipment utilization rates are low
$\square$ Material handling slow and inefficient
$\square$ Complexities often reduce span of supervision
$\square$ Special attention for each product or customer
$\square$ Accounting and purchasing are more involved

## Process-oriented layout

$\square$ Design places departments with large flows of material or people together
$\square$ Department areas having similar processes located in close proximity

## Process-oriented layout (cont.)

$\square$ Steps in Developing a Process-Oriented Layout

1. Construct a "from-to matrix"
station


## Process-oriented layout (cont.)

$\square$ Steps in Developing a Process-Oriented Layout
2.Determine space requirements for each department

| Assembly <br> Department <br> $(1)$ | Printing <br> Department <br> $(2)$ | Machine Shop <br> Department <br> $(3)$ |
| :---: | :---: | :---: |
| Receiving <br> Department <br> $(4)$ | Shipping <br> Department <br> $(5)$ | Testing <br> Department <br> $(6)$ |
| $40^{\prime}$ |  |  |

## Process-oriented layout (cont.)

$\square$ Steps in Developing a Process-Oriented Layout
3. Develop an initial schematic diagram


## Process-oriented layout (cont.)

$\square$ Steps in Developing a Process-Oriented Layout
Cost of Process-Oriented Layout

$$
\text { Minimize cost }=\sum_{\mathrm{i}=1 \mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{n}}^{\mathrm{n}} X_{\mathrm{ij}} \mathrm{C}_{\mathrm{ij}}
$$

Where $\mathrm{n}=$ total number of work centers or departments
$\mathrm{i}, \mathrm{j}=$ individual departments
$\mathrm{X}_{\mathrm{ij}}=$ number of loads moved from department i to department j
$\mathrm{C}_{\mathrm{ij}}=$ cost to move a load between department i and department j

## Process-oriented layout (cont.)

## $\square$ Steps in Developing a Process-Oriented Layout

4. Determine the cost of the layout

Cost of moving 1 unit between adjacent departments is 1 dollar
Cost of moving 1 unit between nonadjacent departments is 2 dollar


## Process-oriented layout (cont.)

- Possible Layout 2



## Process-oriented layout (cont.)

$\square$ Interdepartmental Flow Graph Showing Number of Weekly Loads


## Cellular Layouts

Cellular manufacturing systems (work cell layout): arranges machinery and equipment to focus on production of a single product or group of related products
$\square$ Cellular Production
Layout in which machines are grouped into a cell that can process items that have similar processing requirements
$\square$ Group Technology
The grouping into part families of items with similar design or manufacturing characteristics

## Cellular Layouts (cont.)

- Work Cells


Bad: Operators caged. No chance to trade elements of work between them.
(Subassembly line layout common in American plants.)


Bad: Operators birdcaged. No chance to increase output with a third operator.


Better. Operators can trade elements of work. Can add and subtract operators. Trained ones can nearly self-balance at different output rates.

Better. Operators can help each other. Might increase output with a third operator.


## Cellular Layouts (cont.)

- Work Cells


Bad: Straight line difficult to balance.
Better: One of several advantages of U -line is better operator access. Here, five operators were reduced to four.


## Advantages and Disadvantages of Cellular Layouts

- Advantages
$>$ Reduced material handling and transit time
$>$ Reduced setup time
$>$ Reduced work-inprocess inventory
>Better use of human resources
>Easier to control
>Easier to automate

■ Disadvantages
>Expanded training and scheduling of workers
$>$ Increased capital investment

## Service Layouts

$\square$ Office layouts
$\square$ Retail layouts
$\square$ Warehouse and storage
layouts

## Office Layout Floor Plan



## Service Layouts (cont.)

## $\square$ Office Layouts

## Relationship Chart



## Office layouts

## Office Relationship Shart



## Service Layouts (cont.)

$\square$ Retail layouts
$\square$ Design maximizes product exposure to customers

- Decision variable
$\square$ Store flow pattern
$\square$ Allocation of (shelf)
space to products


## Retail IService Layout Grid Design



## Service Layouts (cont.)

$\square$ Warehouse and storage layouts

## Warehouse Layout Floor Plan



## Design Product Layouts: Line Balancing

Line Balancing is the process of assigning tasks to workstations in such a way that the workstations have approximately equal time requirements.

## Line Balancing Rules

## Some Heuristic (intuitive) Rules:

$\square$ Assign tasks in order of most following tasks.

Count the number of tasks that follow
$\square$ Assign tasks in order of greatest positional weight.

- Positional weight is the sum of each task's time and the times of all following tasks.


## Line Balancing Rules (cont.)

## Line-Balancing Heuristics

1. Longest task time ให้เลือกงานที่ต้องใช้เวลามากมาทำก่อน
2. Most following tasks เลือกงานที่มีจำนวนงานตามหลังมากที่สุตมาทำก่อน
3. Ranked positional weight
4. Shortest task time
5. Least number of following tasks

เลือกงานจากเวลารวมของงานที่มีจำนวนงาน ตามหลังมากที่สุดนำงานที่มีเวลารวมมากที่สุดมาทำ ก่อน

เลือกงานจากเวลารวมของงานที่มีจำนวนงาน ตามหลังมากที่สุดนำงานที่มิเวลารวมน้อยที่สุดมาทำ ก่อน

เลือกงานที่มิงานตามหลังน้อยๆ มาทำก่อน

## Cycle Time

Cycle time is the maximum time allowed at each workstation to complete its set of tasks on a unit.

## Determine Maximum Output

$$
\begin{array}{rll}
\text { Output rate } & =\underline{\mathrm{OT}} \\
\mathrm{CT} \\
\mathrm{CT} & = & \text { cycle time } \\
& \\
& \\
\text { Where OT } & = & \text { Operating time per day } \\
\mathrm{D} & = & \text { Desired output rate }
\end{array}
$$

## Determine the Minimum Number of

## Workstations Required

$$
\mathrm{N}=\frac{\left(\sum \mathrm{t}\right)}{\mathrm{CT}}
$$

Where $\sum \mathrm{t}=$ sum of task time
$\mathrm{N}=$ Minimum number of work station

## Precedence Diagram

Precedence diagram: Tool used in line balancing to display elemental tasks and sequence requirements


## Calculate Percent Idle Time

# Percent idle time $=$ Idle time per cycle (N)(CT) 

Efficiency $=100$ - Percent idle time

## Example 1

Plan to produce 400 units in 1 day ( 8 hours)

| Task | Immediate <br> follower | Task time <br> (min) |
| :---: | :---: | :---: |
| a | b | 0.2 |
| b | e | 0.2 |
| c | d | 0.8 |
| d | f | 0.6 |
| e | f | 0.3 |
| f | g | 1.0 |
| g | h | 0.4 |
| h | end | 0.3 |

## Solution to Example 1 (cont.)



## Solution to Example 1 (cont.)

$$
\mathrm{CT}=\text { cycle time }=\frac{480}{400}=1.2 \mathrm{~min}
$$

$$
\mathrm{N}=\frac{3.8}{1.2}=4
$$



## Solution to Example 1 (cont.)

| 困 |
| :--- |
| Station |
| 1 |

## Solution to Example 1 (cont.)

$$
\begin{aligned}
\text { Percent idle time } & =\underline{\text { Idle time per cycle }} \\
& =\frac{1}{(\mathrm{~N})(\mathrm{CT})} \\
& =20.8 \% \\
\text { Efficiency } & =100-\text { Percent idle time } \\
& =100-20.8 \\
& =72.9 \%
\end{aligned}
$$

## Solution to Example 1 (cont.)

Move b from station 1 to station 2

| Station | Job | Time (นาที) | Total Time <br> (นาที) | Idle time |
| :---: | :---: | :---: | :---: | :---: |
| 1 | a | 0.2 |  | 1.0 |
| $(1.1-1.0)=$ |  |  |  |  |
|  | c | 0.8 | 0.1 |  |
| 2 | b | 0.2 | 1.1 | $(1.1-1.1)=0$ |
|  | d | 0.6 | 1.0 | $(1.1-1.0)=$ |
| 3 | e | 0.3 | 0.1 |  |
| 4 | g | 1.0 | 0.7 | $(1.1-0.7)=$ |
|  | h | 0.3 | 0.4 |  |

## Solution to Example 1 (cont.)

$$
\begin{aligned}
\text { Percent idle time } & =\underline{\text { Idle time per cycle }} \\
& =\frac{0.6}{(\mathrm{~N})(\mathrm{CT})} \\
& =13.6 \% \\
\text { Efficiency } & =100-\text { Percent idle time } \\
& =100-13.6 \\
& =86.4 \%
\end{aligned}
$$

## Bottleneck Workstation



## Parallel Workstations



## Example TN5.2

## Assembly-Line Balancing

The Model J Wagon is to be assembled on a conveyor belt. 500 wagons are required per day.
Production time per day is 420 minutes, and the assembly steps and times for the wagon are give in Exhibit TN5.10 Assignment: Find the balance that minimizes the number of workstations, subject to Cycle time and precedence constraints.

## SOLUTION

1. Draw a precedence diagram. Exhibit TN5.11 Illustrates the sequential relationships identified in Exhibit TN5.10(The length of the arrows has no meaning.)

## Example TN5. 2 (cont.)

| TASK | $\begin{aligned} & \text { TASK TIME } \\ & \text { (IN SECONDS) } \end{aligned}$ | DESCRIPTIon | TASKS That Must Precede |
| :---: | :---: | :---: | :---: |
| A | 45 | Position rear axle support and hand fasten four screws to nuts. | - |
| B | 11 | Insert rear axle. | A |
| C | 9 | Tighten rear axle support screws to nuts. | B |
| D | 50 | Position front axle assembly and hand fasten with four screws to nuts. | - |
| E | 15 | Tighten front axle assembly screws. | D |
| F | 12 | Position rear wheel \#1 and fasten hubcap. | C |
| G | 12 | Position rear wheel \#2 and fasten hubcap. | C |
| H | 12 | Position front wheel \#1 and fasten hubcap. | E |
| 1 | 12 | Position front wheel \#2 and fasten hubcap. | E |
| J | 8 | Position wagon handle shaft on front axle assembly and hand fasten bolt and nut. | F, G, H, I |
| K | 9 | Tighten bolt and nut. | J |
|  | 195 |  |  |

## Example TN5.2 (cont.)



2 Determine workstation cycle time. Here we have to convert to seconds because our task times are in seconds.

$$
C=\frac{\text { Production time per day }}{\text { Output per day }}=\frac{60 \mathrm{sec} . \times 420 \mathrm{~min} .}{500 \text { wagons }}=\frac{25,200}{500}=50.4
$$

3 Determine the theoretical minimum number of workstations required (the actual number may be greater):

$$
N_{t}=\frac{T}{C}=\frac{195 \text { seconds }}{50.4 \text { seconds }}=3.87=4(\text { rounded up })
$$

## Example TN5. 2 (cont.)

|  | TASk | $\begin{aligned} & \text { TASK TIME } \\ & \text { (IN SECONDS) } \end{aligned}$ | Remaining <br> Unassigned <br> Time <br> (in Seconds) | Feasible <br> Remaining <br> TASKS | TASK WITH Most FOllowers | TASK WITH LONGEST Operation Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station 1 | A | 45 | 5.4 idle | None |  |  |
| Station 2 | D | 50 | 0.4 idle | None |  |  |
| Station 3 | $\left\{\begin{array}{l}\text { B } \\ \mathrm{E} \\ C \\ \mathrm{~F}^{*}\end{array}\right.$ | $\begin{array}{r} 11 \\ 15 \\ 9 \\ 12 \end{array}$ | $\begin{gathered} 39.4 \\ 24.4 \\ 15.4 \\ 3.4 \text { idle } \end{gathered}$ | C, E <br> C, $\mathrm{H}, \mathrm{I}$ F, G, H, I <br> None | $\begin{aligned} & \text { C, E } \\ & \text { C } \\ & \text { F, G, H, I } \end{aligned}$ | E F, G, H, I |
| Station 4 | $\left\{\begin{array}{l}G \\ H * \\ 1 \\ J\end{array}\right.$ | $\begin{array}{r} 12 \\ 12 \\ 12 \\ 8 \end{array}$ | $\begin{gathered} 38.4 \\ 26.4 \\ 14.4 \\ 6.4 \text { idle } \end{gathered}$ | H, I <br> 1 <br> J <br> None | H, I | H, I |
| Station 5 | K | 9 | 41.4 idle | None |  |  |

Example TN5. 2 (cont.)


Efficiency $=\frac{T}{N_{a} C}=\frac{195}{(5)(50.4)}=.77$, or $77 \%$

## Ex 03

Firm determines that there are 480 productive minutes are available per day.
The production schedule requirement is 40 units be completed as output from the assembly line each day. Determine cycle time, number of work stations, efficiency.

| Task | Performance <br> Time <br> (minutes) | Task Must Follow <br> Task Listed <br> Below |  |
| :---: | :---: | :---: | :---: |
| A | 10 | - |  |
| B | 11 | A | This means that <br> C |
| Casks B and E |  |  |  |

## Ex 03 (cont.)

$\left.\begin{array}{ccc}\text { Performance } \\ \text { Time } \\ \text { (minutes) }\end{array} \quad \begin{array}{c}\text { Task Must Follow } \\ \text { Task Listed } \\ \text { Below }\end{array}\right]$

## Ex 03 (cont.)

$$
\begin{aligned}
\mathrm{CT}=\text { cycle time } & =\frac{\text { Production time available per day }}{\text { Units required per day }} \\
& =\frac{480}{40} \\
& =12 \mathrm{~min} \\
\mathrm{~N} & =\frac{66}{12} \\
& =5.5 \text { or } 6 \text { stations }
\end{aligned}
$$

Ex 03 (cont.)


## Ex 03 (cont.)

Efficiency
$=$
Task time
(actual number of workstations) $x$ (largest cycle time)
$=66$ minutes.
( 6 stations) $\times(12$ minutes $)$
$=\quad 91.7 \%$

## Ex 04

The Toy company has decided to manufacture a new toy, the production of Which is broken into six steps. The demand for toy is 4800 units per 40 hourweek
a) Draw a precedence diagram of this operation
b) Given the demand, what is the cycle time of operation?
c) What is theoretical minimum number of workstations?
d) Assign tasks to workstations ?
e) What is efficiency of the assembly line if number of station 4,5 or 6 ?

| Task | Performance Time <br> (in seconds) | Predecessors |
| :---: | :---: | :---: |
| A | 20 | None |
| B | 30 | A |
| C | 15 | A |
| D | 15 | A |
| E | 10 | B,C |
| F | 30 | D,E |

## Ex 04

(a)

(b) cycle time $=\left(\frac{40 \mathrm{hr} .}{4,800 \text { units }}\right)\left(\frac{60 \mathrm{~min}}{\mathrm{hr} .}\right)\left(\frac{60 \mathrm{sec} .}{\mathrm{min} .}\right)$
$=30 \mathrm{sec}$. per unit
(c) $\Sigma t / C T=120 / 30=4$ stations is theoretical minimum

## Ex 04

(d)

The assembly line balance for a cycle time of 30 seconds requires five stations, as shown below and in part (a) above

| Station | Task | Time <br> (sec.) | Time Left <br> (sec.) |
| :---: | :---: | :---: | :---: |
|  | A | 20 | 10 |
| 1 | B | 30 |  |
| 2 | C | 15 | 15 |
| 3 | D | 15 |  |
| 4 | E | 10 | 20 |
| 5 | F | 30 |  |

Total idle time $=45$ seconds $(=10+15+20)$
(f) If four stations were possible:

$$
\begin{aligned}
\text { Efficiency } & =\frac{\sum t}{(\text { No. Stations })(\text { Cycle time })} \\
& =\frac{120}{(4)(30)}=\frac{120}{120}=1.0=100 \%
\end{aligned}
$$

With five stations:

$$
\begin{aligned}
\text { Efficiency } & =\frac{\sum t}{(\text { No. Stations })(\text { Cycle time })} \\
& =\frac{120}{(5)(30)}=\frac{120}{150}=.8=80 \%
\end{aligned}
$$

If six stations are used:

$$
\begin{aligned}
\text { Efficiency } & =\frac{\sum t}{(\text { No. Stations })(\text { Cycle time })} \\
& =\frac{120}{(6)(30)}=\frac{120}{180}=.666=66.6 \%
\end{aligned}
$$

## Comparison of Product and Process Layouts

|  | Product | Process |
| :---: | :---: | :---: |
| - Description <br> - Type of process | - Sequential arrangement of activities <br> - Continuous, mass production, mainly assembly | - Functional grouping of activities <br> - Intermittent, job shop, batch production, mainly fabrication |
| - Product <br> - Demand <br> - Volume <br> - Equipment | - Standardized, made to stock <br> - Stable <br> - High <br> - Special purpose | - Varied, made to order <br> - Fluctuating <br> - Low <br> - General purpose |

## Comparison of Product and Process Layouts (cont.)

|  | Product | Process |
| :---: | :---: | :---: |
| - Workers <br> - Inventory <br> - Storage space <br> - Material handling <br> - Aisles <br> - Scheduling <br> - Layout decision <br> - Goal <br> - Advantage | - Limited skills <br> - Low in-process, high finished goods <br> - Small <br> - Fixed path (conveyor) <br> - Narrow <br> - Part of balancing /Line <br> - Line balancing <br> - Equalize work at each station <br> - Efficiency | - Varied skills <br> - High in-process, low finished goods <br> - Large <br> - Variable path (forklift) <br> - Wide <br> - Dynamic / Orders <br> - Machine location <br> - Minimize material handling cost <br> - Flexibility |

## Ex 05

Cycle $=1$ minutes

| Task | Performance <br> Time <br> (minutes) | Task Must Follow <br> Task Listed <br> Below |
| :---: | :---: | :---: |
| 1 | 0.20 | - |
| 2 | 0.40 | - |
| 3 | 0.70 | 1 |
| 4 | 0.10 | 1,2 |
| 5 | 0.30 | 2 |
| 6 | 0.11 | 3 |
| 7 | 0.32 | 3 |
| 8 | 0.60 | $6,7,8$ |
| 9 | 0.27 | 5,8 |
| 10 | 0.38 | 9,10 |
| 11 | 0.50 | 11 |
| 12 | 0.12 |  |

จงทำให้ Line Balance โดยแนวคิดของ Ranked positional weight

Ex 05 (cont.)


## Ex 05 (cont.)

$\square$ หาค่า Ranging ของแต่ละงานออกมาก่อน (หาเวลาของงานทั้ง
้ั้
ที่ต

- Station 12 มีเวลาของงานรวมทั้งหร 0.12
- Station 11 มีเวลาของงานรวมทั้งหร $0.5+0.12=0.62$
- Station 10 มีเวลาของงานรวมทั้งหร $0.62+0.38=1$
- Station 9 มีเวลาของงานรวมทั้งหร $0.27+0.5+0.12=0.89$
$\square$ Station 8 มีเวลาของงานรวมทั้งหร $0.6+0.27+0.38+0.5+0.12=1.87$
- Station 7 มีเวลาของงานรวมทั้งหร $0.32+0.27+0.5+0.12=1.21$
$\square$ Station 6 มีเวลาของงานรวมทั้งหร $0.11+0.27+0.5+0.12=1$
$\square$ Station 5 มีเวลาของงานรวมทั้งหร $0.3+0.38+0.5+0.12=1.3$
$\square$ Station 4 มีเวลาของงานรวมทั้งหร $0.1+0.6+0.38+0.27+0.5+0.12=1.97$
$\square$ Station 3 มีเวลาของงานรวมทั้งหร $0.7+0.11+0.32+0.6+0.27+0.38+0.5+0.12=3$
$\square$ Station 2 มีเวลาของงานรวมทั้งหร $0.4+0.1+0.3+0.6+0.38+0.27+0.5+0.12=2.67$
$\square$ Station 1 มีเวลาของงานรวมทั้งหร $0.2+0.7+0.1+0.11+0.32+0.6+0.38+0.27+0.5+0.12=3.3$


## Ex 05 (cont.)

| Station | Job | Time (นาที) | $\begin{array}{c}\text { Total Time } \\ \text { (นาที) }\end{array}$ | Idle time |
| :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 0.2 |  |  |
| 2 | 3 | 0.7 | 0.9 | $(1-0.9)=0.1$ |
|  | 4 | 0.4 |  |  |
|  | 5 | 0.1 |  |  |
|  | 6 | 0.3 | 0.91 | $(1-0.91)=$ |
| 0.09 |  |  |  |  |$]$|  |
| :---: |
| 3 |

Percent idle time $=\frac{\text { Idle time per cycle }}{(\mathrm{N})(\mathrm{CT})}$

$$
=\frac{1}{5 \times 0.92}
$$

$$
=21.7 \%
$$

Efficiency $=100-$ Percent idle time
$=100-21.7$
$=78.26 \%$

รวม 1

## Homework

## กำหนดให้ cycle Time $=1$ นาที

จงทำให้ Line Balance โดยแนวคิดของ Longest task time method (ให้เลือกงานที่ต้อง เวลามากมาทำก่อน)

| Task | Performance <br> Time <br> (minutes) | Task Must Follow <br> Task Listed <br> Below |
| :---: | :---: | :---: |
| 1 | 0.5 | - |
| 2 | 0.3 | 1 |
| 3 | 0.8 | 1 |
| 4 | 0.2 | 2 |
| 5 | 0.1 | 2 |
| 6 | 0.6 | 3 |
| 7 | 0.4 | 4,5 |
| 8 | 0.5 | 3,5 |
| 9 | 0.3 | 7,8 |
| 10 | 0.6 | 6,9 |
| Total time | 4.3 min. |  |

