CHAPTER 6

Process Selection and Facility Layout

22/01/2012

Process Selection and System Design.

Process Selection

□ Variety

How much variety in products or service will the system need to handle?

□ Flexibility

What degree of equipment flexibility will be needed?

Volume

What is the expected volume of output?

Process Types

□ Job shop

Small scale

Batch

Moderate volume

□ Repetitive/assembly line

Continuous

Repetitive

Batch

High volumes of standardized goods or services

Job Shop

Continuous

Very high volumes of non-discrete goods

Product and Service Processes

Process Type	Low Volume 😑	>		High Volume
Job Shop	Appliance repair			Ineffective
	Emergency room			
Batch		Commercial		
		baking		
		Classroom		
		Lecture		
Repetitive			Automotive	
			assembly	
			Automatic	
			carwash	
Continuous	Ineffective			Steel Production
(flow)				Water purification

Product – Process Matrix

Dimension	Job shop	Batch	Repetitive	Continuous
Job variety	Very High	Moderate	Low	Very low
Process flexibility	Very High	Moderate	Low	Very low
Unit cost	Very High	Moderate	Low	Very low
Volume of output	Very low	Low	High	Very High

Other issues;

scheduling

work-in-process inventory

labor skill

Process and Product Profiling

□ Process selection can involve substantial investment in

Equipment

Layout of facilities

Product profiling: Linking key product or service requirements to process capabilities

• Key dimensions

- Range of products or services
- Expected order sizes
- Pricing strategies
- Expected schedule changes
- Order winning requirements

Automation

Automation: Machinery that has sensing and control devices that enables it to operate

Fixed automation

Programmable automation

Automation (cont.)

Computer-aided design and manufacturing systems (CAD/CAM)

□ Numerically controlled (NC) machines

Robot

Manufacturing cell

□ Flexible manufacturing systems (FMS)

Computer-integrated manufacturing (CIM)

Facilities Layout

Layout: the configuration of departments, work centers, and equipment, with particular emphasis on movement of work (customers or materials) through the system

Product layouts

Process layouts

□ Fixed-Position layout

Combination layouts

Objective of Layout Design

- Facilitate attainment of product quality
- Use workers and space efficiently
- Avoid bottlenecks
- Minimize unnecessary material handling costs
- Eliminate unnecessary movement of workers or materials
- □ Minimize production time or customer service time
- Design for safety

Basic Layout Types

- □ Fixed-Position layout
- Product layouts
- Process layouts
- Cellular Layouts
- **Service** layouts
 - Office layout
 - Retail layout
 - Warehouse layout

Fixed Position Layouts

■ Fixed Position Layout: Layout in which the product or project remains stationary, and workers, materials, and equipment are moved as needed.

□ Nature of the product dictates this type of layout

Weight

Size

Bulk

□ Large construction projects

Fixed Position Layouts (cont.)

Typical of projects

Equipment, workers, materials, other resources brought to the site

□ Highly skilled labor

□ Often low fixed costs

Typically high variable costs

Product Layout

Used for Repetitive or Continuous Processing

Product Layout (cont.)

Flow shop production (Product-oriented layout): seeks the best

personnel and machine utilization in repetitive or continuous production.

Advantages of Product Layout

- □ High rate of output
- Low unit cost
- □ Labor specialization
- Low material handling cost
- □ High utilization of labor and equipment
- Established routing and scheduling
- □ Routine accounting, purchasing and inventory control

Disadvantages of Product Layout

- Creates dull, repetitive jobs
- Poorly skilled workers may not maintain equipment or quality of output
- □ Fairly inflexible to changes in volume
- □ Highly susceptible to shutdowns
- □ Needs preventive maintenance
- □ Individual incentive plans are impractical

Process Layout

Used for Intermittent processing

Job Shop or Batch Processes

Process Layout (cont.)

Job shop production (Process-oriented layout): deals with low-volume,

high-variety production

- Ease to cross-travel of workers and vehicles
- More compact
- More communication between workers

Advantages of Process Layouts

- **C**an handle a variety of processing requirements
- □ Not particularly vulnerable to equipment failures
- Equipment used is less costly
- Possible to use individual incentive plans

Disadvantages of Process Layouts

- □ In-process inventory costs can be high
- □ Challenging routing and scheduling
- **□** Equipment utilization rates are low
- □ Material handling slow and inefficient
- Complexities often reduce span of supervision
- □ Special attention for each product or customer
- □ Accounting and purchasing are more involved

Process-oriented layout

Design places departments with large flows of material or people together

Department areas having similar processes located in close proximity

Steps in Developing a Process-Oriented Layout

1. Construct a "from-to matrix"

Steps in Developing a Process-Oriented Layout

2.Determine space requirements for each department

Assembly	Printing	Machine Shop	Ť
Department	Department	Department	
(1)	(2)	(3)	
Receiving	Shipping	Testing	40
Department	Department	Department	
(4)	(5)	(6)	

60'-

Steps in Developing a Process-Oriented Layout

3. Develop an initial schematic diagram

Steps in Developing a Process-Oriented Layout

Cost of Process-Oriented Layout

Minimize cost =
$$\sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}C_{ij}$$

Where n = total number of work centers or departments

 X_{ii} = number of loads moved from department i to department j

 C_{ii} = cost to move a load between department i and department j

Steps in Developing a Process-Oriented Layout

4. Determine the cost of the layout

Cost of moving 1 unit between adjacent departments is 1 dollar

Cost of moving 1 unit between nonadjacent departments is 2 dollar

Possible Layout 2

Room 1	Room 2	Room 2	
Painting	Assembly	Machine Shop	1
Department	Department	Department	
(2)	(1)	(3)	
Receiving	Shipping	Testing	
Department	Department	Department	
(4)	(5)	(6)	
Room 4	Room 5	Room 6	ļ

□ Interdepartmental Flow Graph Showing Number of Weekly Loads

Cellular Layouts

Cellular manufacturing systems (work cell layout): arranges machinery and equipment to focus on production of a single product or group of related products

Cellular Production

• Layout in which machines are grouped into a cell that can process items that have similar processing requirements

Group Technology

The grouping into part families of items with similar design or manufacturing characteristics

Cellular Layouts (cont.)

• Work Cells

Cellular Layouts (cont.)

• Work Cells

Advantages and Disadvantages of Cellular Layouts

Advantages

- Reduced material handling and transit time
- Reduced setup time
- Reduced work-inprocess inventory
- Better use of human resources
- Easier to control
- Easier to automate

Disadvantages

- Expanded training and scheduling of workers
- Increased capital investment

Service Layouts

Office layouts

- Retail layouts
- □ Warehouse and storage

layouts

Service Layouts (cont.)

Office Layouts

Office layouts

Service Layouts (cont.)

Retail layouts

Design maximizes product exposure to customers

Decision variable

□Store flow pattern

□Allocation of (shelf)

space to products

Service Layouts (cont.)

□ Warehouse and storage layouts

Design Product Layouts: Line Balancing

Line Balancing is the process of assigning tasks to workstations in such a way that the workstations have approximately equal time requirements.

Line Balancing Rules

Some Heuristic (intuitive) Rules:

Assign tasks in order of most following tasks.

Count the number of tasks that follow

Assign tasks in order of greatest positional weight.

Positional weight is the sum of each task's time and the times of all following tasks.

Line Balancing Rules (cont.)

Line-Balancing Heuristics

1. Longest task time	ให้เลือกงานที่ต้องใช้เวลามากมาทำก่อน
2. Most following tasks	เลือกงานที่มีจำนวนงานตามหลังมากที่สุดมาทำก่อน
3. Ranked positional weight	เลือกงานจากเวลารวมของงานที่มีจำนวนงาน ตามหลังมากที่สุดนำงานที่มีเวลารวมมากที่สุดมาทำ ก่อน
4. Shortest task time	เลือกงานจากเวลารวมของงานที่มีจำนวนงาน ตามหลังมากที่สุดนำงานที่มีเวลารวมน้อยที่สุดมาทำ ก่อน
5. Least number of following tasks	เลือกงานที่มีงานตามหลังน้อยๆ มาทำก่อน

Cycle Time

Cycle time is the maximum time allowed at each workstation to complete its set of tasks on a unit.

Determine Maximum Output

Output	rate	=	<u>OT</u>	
			СТ	
	СТ	=	cycle time =	<u>OT</u> D
Where	ОТ	=	Operating time per day	
	D	=	Desired output rate	

Determine the Minimum Number of Workstations Required

$$N = \frac{(\sum t)}{CT}$$

Where
$$\sum t = sum$$
 of task time
N = Minimum number of work station

Precedence Diagram

Precedence diagram: Tool used in line balancing to display elemental tasks and sequence requirements

Calculate Percent Idle Time

Percent idle time =
$$\frac{\text{Idle time per cycle}}{(N)(CT)}$$

Efficiency = 100 – Percent idle time

Example 1

Plan to produce 400 units in 1 day (8 hours)

	Immediate	Task time
Task	follower	(min)
а	b	0.2
b	е	0.2
С	d	0.8
d	f	0.6
е	f	0.3
f	g	1.0
g	h	0.4
h	end	0.3

$$CT = cycle time = \frac{480}{400} = 1.2 min$$

$$N = \frac{3.8}{1.2} = 4$$

+ Total Time Station Job Time (นาที) Idle time (นาที) 0.2 1 а 0.2 b 0.8 1.2 (1.2 - 1.2) = 0С 2 0.6 d 0.9 (1.2 - 0.9) =0.3 e 0.3 3 f 1.0 1.0 (1.2 - 1.0) =0.2 4 0.4 g h 0.3 0.7 (1.2 - 0.7) =0.5 Ъ รวม 1.0

Percent idle time	=	<u>Idle time per cycle</u>
		(N) (CT)
	=	<u> 1 .</u>
		4x1.2
	=	20.8%
Efficiency	=	100 – Percent idle time

- = 100-20.8
- = 72.9 %

Move b from station 1 to station 2

Station	Job	Time (นาที)	Total Time (นาที)	Idle time
1	a c	0.2 0.8	1.0	(1.1 - 1.0) = 0.1
2	b d e	0.2 0.6 0.3	1.1	(1.1 - 1.1) = 0
3	f	1.0	1.0	(1, 1 - 1, 0) = 0.1
4	g h	0.4 0.3	0.7	(1.1-0.7) = 0.4

รวม 0.6

Percent idle time	=	Idle time per cycle
		(N) (CT)
	=	0.6 .
		4x1.1
	=	13.6%
Efficiency	=	100 – Percent idle time

- = 100-13.6
- = 86.4 %

Bottleneck Workstation

Parallel Workstations

Example TN5.2

Assembly-Line Balancing

The Model J Wagon is to be assembled on a conveyor belt. 500 wagons are required per day. Production time per day is 420 minutes, and the assembly steps and times for the wagon are give in Exhibit TN5.10 Assignment: Find the balance that minimizes the number of workstations, subject to Cycle time and precedence constraints.

SOLUTION

1. Draw a precedence diagram. Exhibit TN5.11 Illustrates the sequential relationships identified in Exhibit TN5.10(The length of the arrows has no meaning.)

Таѕк	TASK TIME (IN SECONDS)	DESCRIPTION	TASKS THAT MUST PRECEDE
Δ	45	Position rear axle support and hand fasten four screws to puts	
D D	45	Insert rear axie	
D	11	Insert rear axte.	A
C	9	Tighten rear axle support screws to nuts.	В
D	50	Position front axle assembly and hand fasten with four screws to nuts.	-
E	15	Tighten front axle assembly screws.	D
F	12	Position rear wheel #1 and fasten hubcap.	С
G	12	Position rear wheel #2 and fasten hubcap.	С
Н	12	Position front wheel #1 and fasten hubcap.	E
1	12	Position front wheel #2 and fasten hubcap.	E
J	8	Position wagon handle shaft on front axle assembly and hand fasten bolt and nut.	F, G, H, I
К	9	Tighten bolt and nut.	J
	195		

2 Determine workstation cycle time. Here we have to convert to seconds because our task times are in seconds.

$$C = \frac{\text{Production time per day}}{\text{Output per day}} = \frac{60 \text{ sec.} \times 420 \text{ min.}}{500 \text{ wagons}} = \frac{25,200}{500} = 50.4$$

3 Determine the theoretical minimum number of workstations required (the actual number may be greater):

$$N_t = \frac{T}{C} = \frac{195 \text{ seconds}}{50.4 \text{ seconds}} = 3.87 = 4 \text{ (rounded up)}$$

	Таѕк	Task Time (in Seconds)	Remaining Unassigned Time (in Seconds)	Feasible Remaining Tasks	Task with Most Followers	TASK WITH LONGEST OPERATION TIME
Station 1	A	45	5.4 idle	None		
Station 2	D	50	0.4 idle	None		
	(B	11	39.4	C, E	C, E	E
Charling a	E	15	24.4	C, H, I	C	
Station 3	C	9	15.4	F, G, H, I	F, G, H, I	F, G, H, I
	F*	12	3.4 idle	None		
	G	12	38.4	Н, І	H, I	H, I
Station 4	H*	12	26.4	1		
Station 4	1	12	14.4	J		
	U	8	6.4 idle	None		
Station 5	K	9	41.4 idle	None		

*Denotes task arbitrarily selected where there is a tie between longest operation times.

efficiency.

Firm determines that there are 480 productive minutes are available per day. The production schedule requirement is 40 units be completed as output from the assembly line each day. Determine cycle time, number of work stations,

Task	Performance Time (minutes)	Task Must Follow Task Listed Below	
A	10	_	
В	11	Α 🥿	This means that
С	5	В	tasks B and E
D	4	В	until task A has
E	12	A	been completed
F	3	C, D	
G	7	F	
н	11	E	
1	3	G , H	
Tot	tal time 66		

	Performance Time	Task Must Follow Task Listed
Task	(minutes)	Below
A	10	_
В	11	Α
С	5	В
D	4	В
E	12	A
F	3	C, D
G	7	F
н	11	E
1	3	G, H
_		

Total time 66

 $CT = cycle time = \frac{Production time available per day}{Units required per day}$ $= \frac{480}{40}$ = 12 min $N = \frac{66}{12}$

= 5.5 or 6 stations

Efficiency	= Task time .
	(actual number of workstations) x (largest cycle time)
	= <u>66 minutes</u> .
	(6 stations) x (12 minutes)
	= 91.7 %

The Toy company has decided to manufacture a new toy, the production of Which is broken into six steps. The demand for toy is 4800 units per 40 hourweek

- a) Draw a precedence diagram of this operation
- b) Given the demand, what is the cycle time of operation?
- c) What is theoretical minimum number of workstations?
- d) Assign tasks to workstations?
- e) What is efficiency of the assembly line if number of station 4, 5 or 6?

Task	Performance Time (in seconds)	Predecessors
А	20	None
В	30	A
С	15	A
D	15	A
Е	10	B,C
F	30	D,E

(c) $\Sigma t/CT = 120/30 = 4$ stations is theoretical minimum

(d)

The assembly line balance for a cycle time of 30 seconds requires five stations, as shown below and in part (a) above

Station	Task	Time (sec.)	Time Left (sec.)
1	A	20	10
2	В	30	
3	С	15	15
	D	15	
4	E	10	20
5	F	30	

Total idle time = 45 seconds (=10 + 15 + 20)

(f) If four stations were possible:

Efficiency = $\frac{\sum t}{\text{(No. Stations)(Cycle time)}}$ $= \frac{120}{(4)(30)} = \frac{120}{120} = 1.0 = 100\%$

With five stations:

Efficiency =
$$\frac{\sum t}{\text{(No. Stations)(Cycle time)}}$$
$$= \frac{120}{(5)(30)} = \frac{120}{150} = .8 = 80\%$$

If six stations are used:

Efficiency =
$$\frac{\sum t}{(\text{No. Stations})(\text{Cycle time})}$$

= $\frac{120}{(6)(30)} = \frac{120}{180} = .666 = 66.6\%$

Comparison of Product and Process Layouts

t Process
 Functional grouping of
 activities activities Intermittent, job shop, batch production, mainly fabrication
, made • Varied, made to order
Fluctuating
LowGeneral purpose
Comparison of Product and Process Layouts (cont.)

	Product	Process
Workers	Limited skills	 Varied skills
 Inventory 	 Low in-process, high 	 High in-process, low
	finished goods	finished goods
Storage space	Small	 Large
Material handling	 Fixed path (conveyor) 	 Variable path (forklift)
 Aisles 	Narrow	 Wide
Scheduling	Part of balancing /Line	 Dynamic / Orders
 Layout decision 	Line balancing	 Machine location
 Goal 	Equalize work at each	Minimize material
	station	handling cost
 Advantage 	Efficiency	 Flexibility

Ex 05

	Task	Performance Time (minutes)	Task Must Follow Task Listed Below
Cvcle = 1 minutes	1	0.20	121
5	2	0.40	
	3	0.70	1
	4	0.10	1,2
	5	0.30	2
	6	0.11	3
	7	0.32	3
	8	0.60	3,4
	9	0.27	6,7,8
	10	0.38	5,8
	11	0.50	9,10
	12	0.12	11
	Total time	e 4 min.	

จงทำให้ Line Balance โดยแนวคิดของ Ranked positional weight

Ex 05 (cont.)

Ex 05 (cont.)

หาค่า Ranging ของแต่ละงานออกมาก่อน (หาเวลาของงานทั้งหมดที่ตาม + เวลาของตัวมันเอง) Station 12 มีเวลาของงานรวมทั้งหา 0.12 Station 11 มีเวลาของงานรวมทั้งหา 0.5 + 0.12 = 0.62Station 10 มีเวลาของงานรวมทั้งหา $0.62 \pm 0.38 = 1$ Station 9 มีเวลาของงานรวมทั้งหร 0.27 + 0.5 + 0.12 = 0.89Station 8 มีเวลาของงานรวมทั้งหม 0.6 + 0.27 + 0.38 + 0.5 + 0.12 = 1.87Station 7 มีเวลาของงานรวมทั้งหม 0.32 + 0.27 + 0.5 + 0.12 = 1.21Station 6 มีเวลาของงานรวมทั้งหม 0.11 + 0.27 + 0.5 + 0.12 = 1Station 5 มีเวลาของงานรวมทั้งหม 0.3 + 0.38 + 0.5 + 0.12 = 1.3Station 4 มีเวลาของงานรวมทั้งหม 0.1 + 0.6 + 0.38 + 0.27 + 0.5 + 0.12 = 1.97Station 3 มีเวลาของงานรวมทั้งหม 0.7 + 0.11 + 0.32 + 0.6 + 0.27 + 0.38 + 0.5 + 0.12 = 3Station 2 มีเวลาของงานรวมทั้งหร 0.4 + 0.1 + 0.3 + 0.6 + 0.38 + 0.27 + 0.5 + 0.12 = 2.67Station 1 มีเวลาของงานรวมทั้งหา 0.2 + 0.7 + 0.1 + 0.11 + 0.32 + 0.6 + 0.38 + 0.27 + 0.5 + 0.12 = 3.3

Ex	05	(cont.)

Station	Job	Time (นาที)	Total Time (นาที)	Idle time	
1	1 3	0.2 0.7	0.9	(1-0.9) = 0.1	Percent idle time = $\frac{\text{Idle time per cycle}}{(N)(CT)}$ = $\frac{1}{\frac{5 \times 0.92}{5 \times 0.92}}$ = 21.7 %
2	2 4 5 6	0.4 0.1 0.3 0.11	0.91	(1 -0.91) = 0.09	
3	8 7	0.6 0.32	0.92	(1 -0.92) = 0.08	Efficiency = 100 - Percent idle time = 100 - 21.7
4	10 9	0.38 0.27	0.65	(1 -0.65) = 0.35	= 78.26 %
5	11 12	0.5 0.12	0.62	(1 -0.62) = 0.38	

<u>รวม 1</u>

Homework

กำหนดให้ cycle Time = 1 นาที

จงทำให้ Line Balance โดยแนวคิดของ Longest task time method (ให้เลือกงานที่ต้อง เวลามากมาทำก่อน)

Task	Performance Time (minutes)	Task Must Follow Task Listed Below
1	0.5	•
2	0.3	1
3	0.8	1
4	0.2	2
5	0.1	2
6	0.6	3
7	0.4	4,5
8	0.5	3,5
9	0.3	7,8
10	0.6	6,9
Total tir	ne 4.3 min).