

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

$$G_{c}(s) = K_{c}\left(\frac{s+\frac{1}{T_{1}}}{s+\frac{\gamma}{T_{1}}}\right)\left(\frac{s+\frac{1}{T_{2}}}{s+\frac{1}{\beta T_{2}}}\right), \qquad (\gamma > 1, \beta > 1)$$

In designing lag—lead compensators, we consider two cases where $\gamma\neq\beta$ and $\gamma=\beta$

<u>Case I $\gamma \neq \beta$.</u> In this case, the design process is a combination of the design of the lead compensator and that of the lag compensator. The design procedure for the lag—lead compensator follows:

2

4

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

- 1. From the given performance specifications, determine the desired location for the dominant closed-loop poles.
- Using the uncompensated open-loop transfer function G(s), determine the angle deficiency *φ* if the dominant closed-loop poles are to be at the desired location. The phase-lead portion of the lag—lead compensator must contribute this angle *φ*.
- 3. Assuming that we later choose T_2 sufficiently large so that the magnitude of the lag portion

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

is approximately unity, where $s = s_1$ is one of the dominant closed-loop poles, choose the values of T_1 and γ from the requirement that

$$\int \frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\gamma}{T_1}} = \phi$$

The choice of T_1 and γ is not unique. (Infinitely many sets of T_1 and γ are possible.) Then determine the value of K_c from the magnitude condition:

$$\left| K_c \frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\gamma}{T_1}} G(s_1) \right| = 1$$

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

4. If the static velocity error constant K_v is specified, determine the value of β to satisfy the requirement for K_v . The static velocity error constant K_v is given by

$$\begin{split} K_v &= \lim_{s \to 0} sG_c(s)G(s) \\ &= \lim_{s \to 0} sK_c \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right) G(s) \\ &= \lim_{s \to 0} sK_c \frac{\beta}{\gamma} G(s) \end{split}$$

where K_c and γ are already determined in step 3. Hence, given the value of K_v the value of β can be determined from this last equation. Then, using the value of β thus determined,

5

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

<u>Case 2.</u> $\gamma = \beta$. If $\gamma = \beta$ is required in Equation (7-6), then the preceding design procedure for the lag–lead compensator may be modified as follows:

1. From the given performance specifications, determine the desired location for the dominant closed-loop poles.

2. The lag-lead compensator given by Equation (7-6) is modified to $\frac{1}{2}$

$$G_{c}(s) = K_{c} \frac{(T_{1}s+1)(T_{2}s+1)}{\left(\frac{T_{1}}{\beta}s+1\right)(\beta T_{2}s+1)} = K_{c} \frac{\left(s+\frac{1}{T_{1}}\right)\left(s+\frac{1}{T_{2}}\right)}{\left(s+\frac{\beta}{T_{1}}\right)\left(s+\frac{1}{\beta T_{2}}\right)}$$
(7-7)

where $\beta > 1$. The open-loop transfer function of the compensated system is $G_c(s)G(s)$. If the static velocity error constant K_c is specified, determine the value of constant K_c from the following equation:

 $K_v = \lim_{s \to 0} sG_c(s)G(s)$ $= \lim_{s \to 0} sK_cG(s)$

$$\left| K_{v} = \lim_{s \to 0} sG_{c}(s)G(s) = \lim_{s \to 0} K_{c} \frac{4}{0.5} = 8K_{c} = 80 \to K_{c} = 10 \right|_{25}$$

Example 2: Lag-Lead Compensator Case: $\gamma = \beta$
The compensated system will have the open-loop transfer function
$G_{c}(s)G(s) = 10\left(\frac{s+2.5}{s+8.64}\right)\left(\frac{s+0.1}{s+0.03}\right)\left(\frac{4}{(s+0.5)s}\right)$
The closed-loop transfer function
$C(s) = G_c G(s) = 40(s^2 + 2.6s + 0.25)$
$\overline{R(s)}^{-1} + G_c G(s)^{-1} \overline{s^4 + 8.69s^3 + 44.34s^2 + 104.122s + 10}$
New closed-loop poles and zeros are located at
$p_1 = -3.968; p_2 = -0.1002; p_{3,4} = -2.3107 \pm j4.449$
$\boxed{z_1 = -2.5; z_2 = -0.1}$ ²⁷

Example 2: Lag-Lead Compensator Case: $\gamma = \beta$
The steady-state error of the system for a unit-ramp input is
$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G(s)} \cdot \frac{1}{s^2}$
$=\lim_{s\to 0}\frac{(s+8.64)(s+0.03)(s+0.5)s}{s^4+8.69s^3+44.34s^2+104.122s+10}\cdot\frac{1}{s}=\frac{0.1296}{10}=0.01296$
The static velocity error constant, K_v is define by
$K_{v} = \frac{1}{e_{ss}} = \frac{1}{0.01296} = 77.16 \text{ sec}^{-1}$
28

