Chapter 11: Fundamentals of Casting

Reference: DeGarmo’s Materials and Processes in Manufacturing
11.1 Introduction

- Products go through a series of processes before they are produced
 - Design
 - Material selection
 - Process selection
 - Manufacture
 - Inspection and evaluation
 - Feedback

- Materials processing is the science and technology that converts a material into a product of a desired shape in the desired quantity
Shape-Producing Processes

- Four basic categories
 - Casting processes (sand casting)
 - Material removal processes (Machining)
 - Deformation processes (forging, extrusion, rolling)
 - Consolidation processes (Welding, Mechanical joint)

- Decisions should be made after all alternatives and limitations are investigated
Figure 11-1 The four materials processing families, with subgroups and typical processes.
11.2 Introduction to Casting

- Casting process
 - Material is melted
 - Heated to proper temperature
 - Treated to modify its chemical makeup
 - Molten material is poured into a mold
 - Solidifies

- Casting can produce a large variety of parts
Advantages of Casting

- Complex shapes
- Parts can have hollow sections or cavities
- Very large parts
- Intricate shaping of metals that are difficult to machine
- Different mold materials can be used
 - Sand, metal, or ceramics
- Different pouring methods
Basic Requirements of Casting Processes

- Six basic steps of casting
 - 1. Mold cavity is produced having the desired shape and size of the part
 - Takes shrinkage into account
 - Single-use or permanent mold
 - 2. Melting process
 - Provides molten material at the proper temperature
 - 3. Pouring technique
 - Molten metal is poured into the mold at a proper rate to ensure that erosion and or defects are minimized
Six Basic Steps of Casting

4. Solidification process
 - Controlled solidification allows the product to have desired properties
 - Mold should be designed so that shrinkage is controlled

5. Mold removal
 - The casting is removed from the mold
 - Single-use molds are broken away from the casting
 - Permanent molds must be designed so that removal does not damage the part

6. Cleaning, finishing, and inspection operations
 - Excess material along parting lines may have to be machined
11.3 Casting Terminology

- **Pattern**: approximate duplicate of the part to be cast
- **Molding material**: material that is packed around the pattern to provide the mold cavity
- **Flask**: rigid frame that holds the molding aggregate
- **Cope**: top half of the pattern
- **Drag**: bottom half of the pattern
- **Core**: sand or metal shape that is inserted into the mold to create internal features
Casting Terminology

- **Mold cavity** - combination of the mold material and cores
- **Riser** - additional void in the mold that provides additional metal to compensate for shrinkage
- **Gating system** - network of channels that delivers the molten metal to the mold
- **Pouring cup** - portion of the gating system that controls the delivery of the metal
- **Sprue** - vertical portion of the gating system
- **Runners** - horizontal channels
- **Gates** - controlled entrances
Casting Terminology

- **Parting line** - separates the cope and drag
- **Draft** - angle or taper on a pattern that allows for easy removal of the casting from the mold
- **Casting** - describes both the process and the product when molten metal is poured and solidified

Figure 11-2 Cross section of a typical two-part sand mold, indicating various mold components and terminology.
Cross Section of a Mold

Figure 11-2
11.4 The Solidification Process

- Molten material is allowed to solidify into the final shape

- Casting defects occur during solidification
 - Gas porosity (solved by adding the vent)
 - Shrinkage (solved by using the riser to add the molten metal)

- Two stages of solidification
 - Nucleation
 - Growth
Nucleation

- Stable particles form from the liquid metal
- Occurs when there is a net release of energy from the liquid
- Undercooling is the difference between the melting point and the temperature at which nucleation occurs
- Each nucleation event produces a grain
 - Nucleation is promoted (more grains) for enhanced material properties
 - Inoculation or grain refinement is the process of introducing solid particles to promote nucleation
Grain Growth

- Occurs as the heat of fusion is extracted from the liquid
- Direction, rate, and type of growth can be controlled
 - Controlled by the way in which heat is removed
 - Rates of nucleation and growth control the size and shape of the crystals
 - Faster cooling rates generally produce finer grain sizes
Cooling Curves

- Useful for studying the solidification process
- Cooling rate is the slope of the cooling curve
- Solidification can occur over a range of temperatures in alloys
- Beginning and end of solidification are indicated by changes in slope

![Cooling Curve Diagram](image)

Figure 11-3 Cooling curve for a pure metal or eutectic-composition alloy (metals with a distinct freezing point), indicating major features related to solidification.
Cooling Curves

Figure 11-4 Phase diagram and companion cooling curve for an alloy with a freezing range. The slope changes indicate the onset and termination of solidification.
Prediction of Solidification Time: Chvorinov’s Rule

- Ability to remove heat from a casting is related to the surface area through which the heat is removed and the environment that it is rejecting heat to.

- **Chvorinov’s Rule:**
 - \(t_s = B \frac{V}{A}^n \) where \(n = 1.5 \) to \(2.0 \)

- \(t_s \) is the time from pouring to solidification

- \(B \) is the mold constant

- \(V \) is the volume of the casting

- \(A \) is the surface area through which heat is rejected
Cast Structure

- Three distinct regions or zones
 - Chill zone
 - Rapid nucleation that occurs when the molten metal comes into contact with the cold walls of the mold
 - Forms a narrow band of randomly oriented crystals on the surface of a casting
 - Columnar zone
 - Rapid growth perpendicular to the casting surface
 - Long and thin
 - Highly directional
 - Equiaxed zone
 - Crystals in the interior of the casting
 - Spherical, randomly oriented crystals
Cast Structure

Figure 11-5 Internal structure of a cast metal bar showing the chill zone at the periphery, columnar grains growing toward the center, and a central shrinkage cavity.

TABLE 11-1 Comparison of As-Cast Properties of 443 Aluminum Cast by Three Different Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Yield Strength (ksi)</th>
<th>Tensile Strength (ksi)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand cast</td>
<td>8</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Permanent mold</td>
<td>9</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Die cast</td>
<td>16</td>
<td>33</td>
<td>9</td>
</tr>
</tbody>
</table>

Molten Metal Problems

- Chemical reactions can occur between molten metal and its surroundings
- Reactions can lead to defects in the final castings
 - Metal oxides may form when molten metal reacts with oxygen
 - Dross or slag is the material that can be carried with the molten metal during pouring and filling of the mold
 - Affects the surface finish, machinability, and mechanical properties
Molten Metal Problems

- Gas porosity
 - Gas that is not rejected from the liquid metal may be trapped upon solidification
 - Several techniques to prevent gas porosity
 - Prevent the gas from initially dissolving in the liquid
 - Melting can be done in a vacuum
 - Melting can be done in environments with low-solubility gases
 - Minimize turbulence
 - Vacuum degassing removes the gas from the liquid before it is poured into the castings
 - Gas flushing- passing inert gases or reactive gases through the liquid metal
Fluidity and Pouring Temperature

- Metal should flow into all regions of the mold cavity and then solidify
- Fluidity is the ability of a metal to flow and fill a mold
 - Affects the minimum section thickness, maximum length of a thin section, fineness of detail, ability to fill mold extremities
 - Dependent on the composition, freezing temperature, freezing range, and surface tension
- Most important controlling factor is pouring temperature
The Role of the Gating System

- Gating system delivers the molten metal to the mold cavity
- Controls the speed of liquid metal flow and the cooling that occurs during flow
- Rapid rates of filling can produce erosion of the mold cavity
 - Can result in the entrapment of mold material in the final casting
 - Cross sectional areas of the channels regulate flows
Gating Systems

- Proper design minimizes turbulence
- Turbulence promotes absorption of gases, oxidation, and mold erosion
- Choke - smallest cross-sectional area in the gating system
- Runner extensions and wells - used to catch and trap the first metal to enter the mold and prevent it from entering the mold cavity
- Filters - used to trap foreign material
Gating System

Figure 11-9 Typical gating system for a horizontal parting plane mold, showing key components involved in controlling the flow of metal into the mold cavity.
Figure 11-10 Various types of ceramic filters that may be inserted into the gating systems of metal castings.
Solidification Shrinkage

- Most metals undergo noticeable volumetric contraction when cooled
- Three principle stages of shrinkage:
 - Shrinkage of liquid as it cools from the solidification temperature
 - Solidification shrinkage as the liquid turns into solid
 - Solid metal contraction as the solidified metal cools to room temperature

Figure 11-11 Dimensional changes experienced by a metal column as the material cools from a superheated liquid to a room-temperature solid. Note the significant shrinkage that occurs upon solidification.
Solidification Shrinkage

- Amount of liquid metal contraction depends on
 - The coefficient of thermal contraction
 - The amount of superheat

- As the liquid metal solidifies, the atomic structure normally becomes more efficient and significant amounts of shrinkage can occur

- Cavities and voids can be prevented by designing the casting to have directional solidification

- Hot tears can occur when there is significant tensile stress on the surface of the casting material
Risers and Riser Design

- Risers are reservoirs of liquid metal that feed extra metal to the mold to compensate for shrinkage.
- Risers are designed to conserve metal.
- Located so that directional solidification occurs from the extremities of the mold toward the riser.
- Should feed directly to the thickest regions of the casting.
- Blind riser - contained entirely within the mold cavity.
- Live riser - receive the last hot metal that enters the mold.
Risers and Riser Design

- Riser must be separated from the casting upon completion so the connection area must be as small as possible.
Riser Aids

- Riser’s performance may be enhanced by speeding the solidification of the casting (chills) or slowing down the solidification (sleeves or toppings).
- External chills
 - Masses of high-heat capacity material placed in the mold
 - Absorb heat and accelerate cooling in specific regions
- Internal chills
 - Pieces of metal that are placed in the mold cavity and promote rapid solidification
 - Ultimately become part of the cast part
Go to ch 12
11.5 Patterns

- Two basic categories for casting processes
 - Expendable mold processes
 - Permanent mold processes
- Patterns are made from wood, metal, foam, or plastic
- Dimensional modification are incorporated into the design (allowances)
 - Shrinkage allowance is the most important
 - Pattern must be slightly larger than the desired part
Dimensional Allowances

- **Typical allowances**
 - Cast iron 0.8-1.0%
 - Steel 1.5-2.0%
 - Aluminum 1.0-1.3%
 - Magnesium 1.0-1.3%
 - Brass 1.5%

- Shrinkage allowances are incorporated into the pattern using shrink rules

- Thermal contraction might not be the only factor for determining pattern size

- Surface finishing operations (machining, etc.) should be taken into consideration
Pattern Removal

- Parting lines are the preferred method
- Damage can be done to the casting at corners or parting surfaces if tapers or draft angles are not used in the pattern
 - Factors that influence the needed draft
 - Size and shape of pattern
 - Depth of mold cavity
 - Method used to withdraw pattern
 - Pattern material
 - Mold material
 - Molding procedure
Design Considerations

Figure 11-14 Two-part mold showing the parting line and the incorporation of a draft allowance on vertical surfaces.

Figure 11-15 Various allowances incorporated into a casting pattern.
11.6 Design Considerations in Castings

- Location and orientation of the parting line is important to castings
- Parting line can affect:
 - Number of cores
 - Method of supporting cores
 - Use of effective and economical gating
 - Weight of the final casting
 - Final dimensional accuracy
 - Ease of molding
Design Considerations

Figure 11-16 (Left) Elimination of a core by changing the location or orientation of the parting plane.

Figure 11-17 (Right) Elimination of a dry-sand core by a change in part design.
Design Considerations

- It is often desirable to minimize the use of cores
- Controlling the solidification process is important to producing quality castings
- Thicker or heavier sections will cool more slowly, so chills should be used
 - If section thicknesses must change, gradual is better
 - If they are not gradual, stress concentration points can be created
 - Fillets or radii can be used to minimize stress concentration points
 - Risers can also be used
Parting Line and Drafts

Figure 11-18 (Top left) Design where the location of the parting plane is specified by the draft. (Top right) Part with draft unspecified. (Bottom) Various options to produce the top-right part, including a no-draft design.
Section Thicknesses

Figure 11-19 (Above) Typical guidelines for section change transitions in castings.

Figure 11-20 a) The “hot spot” at section r_2 is cause by intersecting sections. B) An interior fillet and exterior radius lead to more uniform thickness and more uniform cooling.
Design Modifications

- Hot spots are areas of the material that cool more slowly than other locations
 - Function of part geometry
 - Localized shrinkage may occur

Figure 11-21 Hot spots often result from intersecting sections of various thickness.
Design Modifications

- Parts that have ribs may experience cracking due to contraction
 - Ribs may be staggered to prevent cracking
- An excess of material may appear around the parting line
 - The parting line may be moved to improve appearance
- Thin-walled castings should be designed with extra caution to prevent cracking
Design Modifications

Figure 11-23 Using staggered ribs to prevent cracking during cooling.
Casting Designs

- May be aided by computer simulation
- Mold filling may be modeled with fluid flow software
- Heat transfer models can predict solidification

TABLE 11-3

<table>
<thead>
<tr>
<th>Casting Method</th>
<th>Minimum Section Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
</tr>
<tr>
<td>Sand casting</td>
<td>3.18</td>
</tr>
<tr>
<td>Permanent mold</td>
<td>2.36</td>
</tr>
<tr>
<td>Die cast</td>
<td>1.57</td>
</tr>
<tr>
<td>Investment cast</td>
<td>1.57</td>
</tr>
<tr>
<td>Plaster mold</td>
<td>2.03</td>
</tr>
</tbody>
</table>
11.7 The Casting Industry

- 14 million pounds of castings are produced every year
- The most common materials cast are gray iron, ductile iron, aluminum alloys, and copper alloys
- 35% of the market is in automotive and light truck manufacturing
- Castings are used in applications ranging from agriculture to railroad equipment and heating and refrigeration
Summary

- A successful casting requires that every aspect of the process be examined.
- Every aspect from the desired grain structure to the desired finish of the product should be considered during design stages.
- Efforts should be made to minimize cracking and defects.
- There are a variety of processes to improve castings and they should all be considered during the design phase.