# Chapter 15: Fundamentals of Metal Forming

ผู้ช่วยศาสตราจารย์ เรือโท ดร. สมญา ภูนะยา

Reference: DeGarmo's Materials and Processes in Manufacturing

### 15.1 Introduction

- Deformation processes have been designed to exploit the plasticity of engineering materials
- Plasticity is the ability of a material to flow as a solid without deterioration of properties
- Deformation processes require a large amount of force
- Processes include bulk flow, simple shearing, or compound bending

### States of Stress



## 15.2 Forming Processes: Independent Variables

- Forming processes consist of independent and dependent variables
- Independent variables are the aspects of the processes that the engineer or operator has <u>direct</u> <u>control</u>
  - Starting material
  - Starting geometry of the workpiece
  - Tool or die geometry
  - Lubrication
  - Starting temperature
  - Speed of operation
  - Amount of deformation

# Forming Operations

| Process        | Schematic Diagram | State of Stress in<br>Main Part During<br>Forming <sup>a</sup> |
|----------------|-------------------|----------------------------------------------------------------|
| Rolling        |                   | 7                                                              |
| Forging        |                   | 9                                                              |
| Extrusion      | F-                | 9                                                              |
| Shear spinning |                   | 12                                                             |

# Forming Operations











8

9

7

Wire and tube drawing



# Forming Operations



\*Numbers correspond to those in parentheses in Table 15-1.

# 15.3 Dependent Variables

- Dependent variables are those that are determined by the independent variable selection
  - □ Force or power requirements
  - Material properties of the product
  - Exit or final temperature
  - Surface finish and precision
  - Nature of the material flow

## 15.4 Independent-Dependent Relationships

- Independent variables- control is direct and immediate
- Dependent variables- control is entirely indirect
  - Determined by the process
  - If a dependent variable needs to be controlled, the designer must select the proper independent variable that changes the dependent variable

# Independent-Dependent Relationships

- Information on the interdependence of independent and dependent variables can be learned in three ways
  - Experience
  - Experiment
  - Process modeling

| Independent variables | Links        | Dependent variables   |
|-----------------------|--------------|-----------------------|
| Starting material     | ĺ            | Force or power        |
| Starting geometry     | -Experience- | requirements          |
| Tool geometry         |              | Product properties    |
| Lubrication           | -Experiment- | Exit temperature      |
| Starting temperature  |              | Surface finish        |
| Speed of deformation  | -Modeling-   | Dimensional precision |
| Amount of deformation |              | Material flow details |

**Figure 15-1** Schematic representation of a metalforming system showing independent variables, dependent variables, and the various means of linking the two.

## 15.5 Process Modeling

- Simulations are created using finite element modeling
- Models can predict how a material will respond to a rolling process, fill a forging die, flow through an extrusion die, or solidify in a casting
- Heat treatments can be simulation
- Costly trial and error development cycles can be eliminated

### 15.6 General Parameters

- Material being deformed must be characterized
  - Strength or resistance for deformation
  - Conditions at different temperatures
  - Formability limits
  - Reaction to lubricants
- Speed of deformation and its effects
- Speed-sensitive materials- more energy is required to produce the same results

### 15.7 Friction and Lubrication Under Metalworking Conditions

- <u>High forces and pressures</u> are required to deform a material
- For some processes, 50% of the energy is spent in overcoming friction
- <u>Changes in lubrication</u> can alter material flow, create or eliminate defects, alter surface finish and dimensional precision, and modify product properties
- Production rates, tool design, tool wear, and process optimization depend on the ability to determine and control friction

### Friction Conditions

- Metalforming friction differs from the friction encountered in mechanical devices
- For light, elastic loads, friction is proportional to the applied pressure
  - $\square$   $\mu$  is the coefficient of friction
- At high pressures, friction is related to the strength of the weaker material





**Figure 15-2** The effect of contact pressure on the frictional resistance between two surfaces.

### Friction

- Friction is resistance to sliding along an interface
- Resistance can be attributed to:
  - **Abrasion(**เป็นรอย)
  - Adhesion(ไม่งยับหรือติดแน่น)
- Resistance is proportional to the strength of the weaker material and the contact area

### Surface Deterioration

- Surface wear is related to friction
- Wear on the workpiece is not objectionable, but wear on the tooling is
- Tooling wear is economically costly and can impact dimensional precision
- Tolerance control can be lost
- Tool wear can impact the surface finish

### Lubrication

- Key to success in many metalforming operations
- Primarily selected to reduce friction and tool wear, but may be used as a thermal barrier, coolant, or corrosion retardant
- Other factors
  - Ease of removal, lack of toxicity, odor, flammability, reactivity, temperature, velocity, wetting characteristics

# 15.8 Temperature Concerns

- Workpiece temperature can be one of the most important process variables
- In general, an increase in temperature is related to a <u>decrease in strength</u>, <u>increase in</u> <u>ductility</u>, and <u>decrease in the rate of strain</u> <u>hardening</u>
- Hot working
- Cold working
- Warm working

#### **Temperature Ranges Metal Forming**

➡ There are three temperature ranges in metal forming processes:

| Category     | Temperature Range                |
|--------------|----------------------------------|
| Cold Working | $\leq$ 0.3 T <sub>m</sub>        |
| Warm Working | $0.3 T_{\rm m} - 0.5 T_{\rm m}$  |
| Hot Working  | $0.5 T_{\rm m} - 0.75 T_{\rm m}$ |

<u>Where</u> T<sub>m</sub> is the melting point of the metal

#### **Cold Working**

- Performed at room temperature or slightly above
- Many cold forming processes are important mass production operations
- Minimum or no machining usually required

These operations are near net shape or net shape processes

#### **Advantages of Cold Working**

Significant advantages of cold forming compared to hot working

- Better accuracy, meaning closer tolerances
- Better surface finish
- Strain hardening increases strength and hardness
- Contamination problems are minimized
- No heating of work required

#### **Disadvantages of Cold Working**

There are certain disadvantages or limitations associated with cold working

- Higher forces are required to initiate and complete the deformation
- Heavier and more powerful equipment and stronger tooling are required.
- Surfaces of starting workpiece must be free of scale and dirt.
- Ductility and strain hardening limit the amount of forming that can be done
  - In some operations, metal must be annealed to allow further deformation
  - In other cases, metal is simply not ductile enough to be cold worked

#### Warm Working

- Performed at temperatures above room temperature but below recrystallization temperature.
- Dividing line between cold working and warm working often expressed in terms of melting point:

 $0.3T_m$ , where  $T_m$  = melting point for metal

#### **Advantages of Warm Working**

- The lower strength and strain hardening as well as higher ductility of the metal at the intermediate temperatures provide warm working the following advantages over cold working
  - Lower forces and power than in cold working
  - More intricate work geometries possible

Need for annealing may be reduced or eliminated

#### **Hot Working**

- Deformation at temperatures above recrystallization temperature
- Recrystallization temperature = about one-half of melting point
- In practice, hot working usually performed somewhat above 0.5*Tm*
- ➡ Metal continues to soften as temperature increases above 0.5*Tm*, enhancing advantage of hot working above this level
- Capability for substantial plastic deformation of the metal far more than possible with cold working or warm working

#### **Advantages of Hot Working**

- Workpart shape can be significantly altered
- Lower forces and power required
- Metals that usually fracture in cold working can be hot formed
- Strength properties of product are generally isotropic
- No strengthening of part occurs from work hardening
  - Advantageous in cases when part is to be subsequently processed by cold forming

#### **Disadvantages of Hot Working**

- Lower dimensional accuracy
- Higher total energy required (due to the thermal energy to heat the workpiece)
- Work surface oxidation (scale), poorer surface finish
- Shorter tool life