Lag-Lead Compensation

Chapter V Control Systems Design by Root-Locus Method

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

$$G_c(s) = K_c \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right), \qquad (\gamma > 1, \beta > 1)$$

<u>Case I $\gamma \neq \beta$.</u> In this case, the design process is a combination of the design of the lead compensator and that of the lag compensator. The design procedure for the lag-lead compensator follows:

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

- 1. From the given performance specifications, determine the
- There are a specifications, determine the desired location for the dominant closed-loop poles.
 Using the uncompensated open-loop transfer function G(s), determine the angle deficiency φ if the dominant closed-loop poles are to be at the desired location. The the desired location is a specification of the dominant closed does a specification of phase-lead portion of the lag-lead compensator must
- contribute this angle Ø.
 3. Assuming that we later choose T₂ sufficiently large so that the magnitude of the lag portion ______

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

is approximately unity, where $s = s_1$ is one of the dominant closed-loop poles, choose the values of T_1 and γ from the requirement that

$$\frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\gamma}{T_1}} = \phi$$

The choice of T_1 and γ is not unique. (Infinitely many sets of T_1 and γ are possible.) Then determine the value of K_c from the magnitude condition:

$$\left| \frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\gamma}{T_1}} G(s_1) \right| = 1$$

Ā

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

4. If the static velocity error constant K_w is specified, determine the value of β to satisfy the requirement for K_w. The static velocity error constant K_w is given by
K_w = lim_x sG_c(s)G(s)

$$= \lim_{s \to 0} s \mathcal{K}_{\epsilon} \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right) G(s)$$
$$= \lim_{s \to 0} s \mathcal{K}_{\epsilon} \frac{\beta}{\gamma} G(s)$$

where K_c and γ are already determined in step 3. Hence, given the value of K_v the value of β can be determined from this last equation. Then, using the value of β thus determined,

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

Choose the value of T_2 such that

$$\begin{vmatrix} \frac{s_{1} + \frac{1}{T_{2}}}{s_{1} + \frac{1}{\beta T_{2}}} \end{vmatrix} \doteq 1$$
$$-5^{\circ} < \underbrace{\int \frac{s_{1} + \frac{1}{T_{2}}}{s_{1} + \frac{1}{T_{2}}} < 0^{\circ}}_{\frac{s_{1} + \frac{1}{\beta T_{2}}}{s_{1} + \frac{1}{\beta T_{2}}}} < 0^{\circ}$$

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

Case 2, $\gamma = \beta$. If $\gamma = \beta$ is required in Equation (7-6), then the preceding design recedure for the lag-lead compensator may be modified as follows: **1.** From the given performance specifications, determine the desired location for the dominant closed-loop poles.

2. The lag-lead compensator given by Equation (7-6) is modified to

$$G_{c}(s) = K_{c} \frac{(T_{1}s+1)(T_{2}s+1)}{\left(\frac{T_{1}}{\beta}s+1\right)(\beta T_{2}s+1)} = K_{c} \frac{\left(s+\frac{1}{T_{1}}\right)\left(s+\frac{1}{T_{2}}\right)}{\left(s+\frac{1}{\beta}\right)\left(s+\frac{1}{\beta T_{2}}\right)}$$

(7–7)

where $\beta > 1$. The open-loop transfer function of the compensated system is $G_{c}(s)G(s)$. If the static velocity error constant K_{c} is specified, determine the value of constant K_{c} from the following equation:

$$K_{p} = \lim_{s \to 0} sG_{c}(s)G(s)$$
$$= \lim_{s \to 0} sK_{c}G(s)$$

Lag—lead Compensation Techniques
Based on the Root-Locus Approach.
3. To have the dominant closed-loop poles at the desired location, calculate the angle
contribution
$$\phi$$
 needed from the phase lead portion of the lag-lead compensator.
4. For the lag-lead compensator, we later choose T_2 sufficiently large so that

$$\begin{aligned} & \left| \frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{1}{BT_2}} \right| \\
\text{is approximately unity, where } s = s_1 \text{ is one of the dominant closed-loop poles. Determine the values of T_1 and β from the magnitude and angle conditions:

$$\begin{aligned} & \left| K_n \left(\frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\beta}{T_1}} \right) G(s_1) \right| = 1 \\
& \left| \frac{s_1 + \frac{1}{T_1}}{s_1 + \frac{\beta}{T_1}} \right| = \phi \end{aligned}$$$$

Lag—lead Compensation Techniques Based on the Root-Locus Approach.

5. Using the value of β just determined, choose T_2 so that

$$\begin{vmatrix} s_1 - \frac{1}{T_2} \\ \frac{s_1 - 1}{\beta T_2} \end{vmatrix} \approx 1$$

- $S^* < \int \frac{s_1 + 1}{s_1 - \frac{1}{\beta T_2}} < 0^{\circ}$

The value of βT_i , the largest time constant of the lag-lead compensator, should not be too large to be physically realized. (An example of the design of the lag-lead compensator when $\gamma = \beta$ is given in Example 7–4.)

Since the requirement on the static velocity error constant is 80 sec $^{\rm 1},$ We have

Example II: Lag-Lead Compensator Case: $\gamma = \beta$ For the phase lag portion, we may choose Thus, the lag-lead compensator becomes

Example II: Lag-Lead Compensator Case: $\gamma = \beta$

The compensated system will have the open-loop transfer function

The closed-loop transfer function

New closed-loop poles and zeros are located at

