

Description

- A 10" long cantilever beam has a rectangular cross section of 1" width and 2^e height.

- Find the deflection of the free end under the effect of the following loads: an end moment of 2000 inlb, and a shear force of 300 lbs.

Y-displacement at the free end (UY), in	Theory	SolidWorks Simulation Solid Mesh	SolidWorks Simulation Beam Mesh
End moment (Moment Study)	-0.005	-0.005006	-0.005
Shear force (Force Study)	0.005	0.005093	0.005

Practices Bending of a Solid Beam

Study Type: Static. Mesh Type: Solid mesh and Beam mesh in separate studies.

Meshing Parameters: Use a Global Size of 2 in for Solid mesh.

Material Properties: Modulus of elasticity = 3.0e7 psi, Poisson's ratio = 0.

Results

Analytical Solution:

 $w_y = (2PL^3)/(6EI)$ (Force Study); $w_y = (ML^2)/(2EI)$ (Moment Study) where: P: Shear force, M: End momemt, L: Beam length, E: Modulus of elasticity, I: Area moment of inertia

93