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Shaft Design

Material Selection

Geometric Layout

Stress and strength

o Static strength

o Fatigue strength

Deflection and rigidity

> Bending deflection

o Torsional deflection

> Slope at bearings and shaft-supported elements

> Shear deflection due to transverse loading of short shafts

Vibration due to natural frequency



Shaft Materials

* Deflection primarily controlled by geometry, not material
» Stress controlled by geometry, not material
» Strength controlled by material property



Shaft Materials

e Shafts are commonly made from low carbon, CD or HR steel,
such as AISI 1020-1050 steels.

e Fatigue properties don’t usually benefit much from high alloy
content and heat treatment.

* Surface hardening usually only used when the shaft 1s being
used as a bearing surface.



Shaft Materials

Cold drawn steel typical for d < 3 1n.

HR steel common for larger sizes. Should be machined all over.
Low production quantities

o Lathe machining is typical

o Minimum material removal may be design goal

High production quantities

o Forming or casting 1S common

o Minimum material may be design goal



Shaft Layout

e [ssues to consider for
shaft layout

o Axial layout of
components

o Supporting axial
loads

> Providing for torque
transmission

> Assembly and
Disassembly
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Axial Layout of Components

(a) (b)

() (d)
Fig. 7-2
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Supporting Axial Loads

» Axial loads must be supported through a bearing to the frame.

* Generally best for only one bearing to carry axial load to
shoulder

» Allows greater tolerances and prevents binding




Providing for Torque Transmission

 Common means of transferring torque to shaft
> Keys
o Splines

o

Setscrews

o Pins

o

Press or shrink fits

o

Tapered fits

» Keys are one of the most effective
o Slip fit of component onto shaft for easy assembly
o Positive angular orientation of component

o Can design key to be weakest link to fail in case of overload



Assembly and Disassembly
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Assembly and Disassembly

Fig. 7-8
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Shaft Design for Stress

e Stresses are only evaluated at critical locations
e Critical locations are usually

> On the outer surface

o Where the bending moment 1s large

> Where the torque 1s present

o Where stress concentrations exist



Shaft Stresses

Standard stress equations can be customized for shafts for
convenience

Axial loads are generally small and constant, so will be 1ignored
in this section

Standard alternating and midrange stresses

M ¢ M c
— a — K il 7_‘|
T, -f Ji Om f ] ( )
T 1 1. r
— a — I 7_2
Taq fs J Tm fs J ( )
Customized for round shafts
32M, 32M,,
T e 7-3)
Trd Trd
167, 167,
Ta — Kfs 3 Tm — DT 3 (7_4)
d Trd



Shaft Stresses

e Combine stresses into von Mises stresses

o) = (0 + 3t =

o) = (07 +3tH)* =

(32K M, )\ 16K, 70\ ]"
rd3 +3 Cadd (7-5)
_ 1/2
32K M, \* 16K 1T, \
( 31'23 ) +3( JT;3 ):| (7=6)
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Shaft Stresses

e Substitute von Mises stresses into failure criteria equation. For
example, using modified Goodman line,

l _ J{; .?;J'
no Se N Sut
L O kM + 3K 1o T?] o+ = 4K M) + 3(K o T
N — Td3 Se fia - fsta S;;r fim - fsitm
(7=7)
e Solving for d 1s convenient for design purposes
16n [ 1 q r11/2
d = - S_ [4(1{fo:}- + 3(Kyy Ta}-]
S (7-8)

| 1q1/2 /
+ 5— [4(Kme)2 —|—3(Kf,;Tm}'] / })

Mt



Shaft Stresses

Similar approach can be taken with any of the fatigue failure
criteria

Equations are referred to by referencing both the Distortion
Energy method of combining stresses and the fatigue failure
locus name. For example, DE-Goodman, DE-Gerber, etc.

In analysis situation, can either use these customized equations
for factor of safety, or can use standard approach from Ch. 6.

In design situation, customized equations for d are much more
convenient.



Shaft Stresses

o DE-Gerber
l_ SA
n  wd3S,

where

4

4

S3nA
TS,

1 +

1 +

A= \JAK Mo + 3Ky, T )

1;2]
1;2])”3

B = \JAK M) + 3Ky, )2

(7-9)

(7-10)
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Shaft Stresses

« DE-ASME Elliptic

KM, Ky 1o\ KM, \? K, T,\21'/2
= 05) o 05) 4 05) - (5]
1 Trd SE SE S}, S}J

(7-11)
KM\ K. T\ K.M.\2 K. T \271/2)1/3
d:{@[é]’(f ﬂ)+3(fs a)+4(f m)+3( s m)] }
o Sﬁ- Se S}r Sy
(7-12)

e DE-Soderberg

L6 gt s L )
n 'ITdS {SE [4(KfMa) + S(KfsTﬂ) ] + SF [4(Kme) + S(Kf.!‘Tm) ]
(7-13)

d = (@{L[d-(KfMﬂ)z 4+ 3(KfSTa)2]1f2
7T (S,
(7-14)

1/3
+ Sl[4(Kme)2 + 3(KfSTm)2]”2})
y
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Shaft Stresses for Rotating Shaft

» For rotating shaft with steady bending and torsion

> Bending stress 1s completely reversed, since a stress element
on the surface cycles from equal tension to compression
during each rotation

o Torsional stress 1s steady

° Previous equations simplify with M, and 7, equal to 0



Checking for Yielding in Shafts
Always necessary to consider static failure, even 1n fatigue
situation
Soderberg criteria inherently guards against yielding

ASME-Elliptic criteria takes yielding into account, but is not
entirely conservative

Gerber and modified Goodman criteria require specific check for
yielding



Checking for Yielding in Shafts

» Use von Mises maximum stress to check for yielding,

! 7

0 211/2
Omax = [(gm +04)" + 3 (Tt + ) ]

a11/2
32K (My 4+ My)\” 16K s (T + To) \
_ +3
wd3 Td3

(7-15)
(7-16)

Sy

!
1("-'rl"]'liiﬁ'[

ny =

e Alternate simple check 1s to obtain conservative estimate of o,
by summing o', and o’

X

' ' '
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Example 7-1

At a machined shaft shoulder the small diameter d is 28 mm, the large diameter D is 42
mm, and the fillet radius is 2.8 mm. The bending moment is 142.4 N-m and the steady
torsion moment is 124.3 N-m. The heat-treated steel shaft has an ultimate strength of
S. = 735 MPa and a yield strength of S, = 574 MPa. The reliability goal is 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue failure
criteria described in this section.

(b) Determine the yielding factor of safety.



Example 7-1 (continued)

Solution (@) D/d = 42/28 = 1.50, r/d = 2.8/28 = 0.10, K, = 1.68 (Fig. A—15-9),
K., = 1.42 (Fig. A-15-8), ¢ = 0.85 (Fig. 6-20), gspear = 0.92 (Fig. 6-21).

From Eq. (6-32),

K;=1+0.8501.68— 1) =1.58
Kpo=1+092(1.42— 1) = 1.39

Eq. (6-8): S! = 0.5(735) = 367.5 MPa
Eq. (6-19): k, = 4.51(735)792% = (.787
78 —0.107
Eq. (6-20): I g = 0.870
Y ’ (7.62)

ke =kg=ky =1

Table 6-6: k. = 0.814
S. = 0.787(0.870)0.814(367.5) = 205 MPa



Example 7-1 (continued)

For a rotating shaft, the constant bending moment will create a completely reversed
bending stress.

M,=1424N-m T,=1243 N-m M. =1,=0
Applying Eq. (7-7) for the DE-Goodman criteria gives

116 [4(1.58 - 142.4)%]'/* PECEEE 12431 .
n 7(0.028)3 205 x 106 735 x 106 -
Answer n=162 DE-Goodman

Similarly, applying Eqgs. (7-9), (7-11), and (7-13) for the other failure criteria,

Answer n=1.87 DE-Gerber
Answer n=1.88 DE-ASME Elliptic
Answer B =1.56 DE-Soderberg
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Example 7-1 (continued)

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Egs. (7-5) and (7-6),

1/2

32 .1.58 - 142.4\?

g = ( T ) ] — 104.4 MPa
s 4 ]

| (16- 139 124.3)2
7(0.028)3

1/
} = 69.4 MPa

Taking, for example, the Goodman failure criteria, application of Eq. (6—46)
gives

1 o o, 1044 694
Py« B P = 0.604
n= S, S, 205 ' 735

n=162

which is identical with the previous result. The same process could be used for the other
failure criteria.



Example 7-1 (continued)

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7-15).

1/2
32(1. 4)\? . e
S ( (158)(1424)) +3(16(139)(1243)) P
7 (0.028)° 7 (0.028)°
S, 574
Answer n}’: ’ — 125 .4

Umax

= 4.58

For comparison, a quick and very conservative check on yielding can be obtained
by replacing o/ .. with o/ + o, . This just saves the extra time of calculating o, . if
o, and o, have already been determined. For this example,

S, 574

o/ +o! 1044 + 69.4

n}v —

which is quite conservative compared with n, = 4.58.



Estimating Stress Concentrations

» Stress analysis for shafts 1s highly dependent on stress
concentrations.

e Stress concentrations depend on size specifications, which are
not known the first time through a design process.

e Standard shaft elements such as shoulders and keys have
standard proportions, making it possible to estimate stress
concentrations factors before determining actual sizes.



Estimating Stress Concentrations

Table 7-1

First Iteration Estimates for Stress-Concentration Factors K, and K,..

Warning: These factors are only estimates for use when actual dimensions are not yet
determined. Do not use these once actual dimensions are available.

Bending Torsional Axial

Shoulder fillet—sharp (r/d = 0.02) 2] 2.2 3.0
Shoulder fillet—well rounded (r/d = 0.1) | ) 1.5 1.9
End-mill keyseat (#/d = 0.02) 2.14 3.0 -
Sled runner keyseat 1.7 - —
Retaining ring groove 5.0 3.0 5.0

Missing values in the table are not readily available.
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Reducing Stress Concentration at Shoulder Fillet

e Bearings often require relatively sharp fillet radius at shoulder

o If such a shoulder is the location of the critical stress, some
manufacturing techniques are available to reduce the stress
concentration

(a) Large radius undercut into shoulder
(b) Large radius relief groove into back of shoulder

(c) Large radius relief groove into small diameter of shaft

Sharp radius Shoulder Large radius N
Large radius undercut relief groove relief groove :‘:1 S
Stress flow - ) Y \
| — Bearing \ _ \ M,
..... }/sm S ) “ )




Example 7-2

This example problem is part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the general
layout and axial dimensions of the countershaft carrying two spur gears has been
proposed, as shown in Fig. 7-10. The gears and bearings are located and supported
by shoulders, and held in place by retaining rings. The gears transmit torque
through keys. Gears have been specified as shown, allowing the tangential and
radial forces transmitted through the gears to the shaft fo be determined as
follows.

Wiy = 540 Ibf Wi, = 2431 Ibf
W3, = 197 Ibf Wi, = 885 Ibf

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted
by gears 2 and 5 (not shown) on gears 3 and 4, respectively.

Proceed with the next phase of the design, in which a suitable material
is selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity
for infinite life of the shaft, with minimum safety factors of 1.5.




Example 7-2 (continued)

Bearing B

Bearing A

| gl -a=f-a
ééiéﬁgﬂ E g EIE| E E E IE
= sl I e I ] B = o re) Slwn| v o of v
SRR EE R RE 8 & S 49888
C/ADEF H B ] KL MB N

Fig. 7-10
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Example 7-2 (continued)

Solution | | -

Perform free body diagram l/wxi r

analysis to get reaction forces T Wss

at the bearings. | | ! | ,l, B
A

R, = 422N

RA}, == 1439 N

RB7 — 8822 N

£

Rp, = 3331 N

From =M., find the torque in —
the shaft between the gears,

T = Whi(d3/2) = 2400(0 372)

= 360N - m.
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Example 7-2 (continued)

3341

655

Generate shear-moment
diagrams for two planes
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Example 7-2 (continued)

3651

Combine orthogonal planes as Mror
vectors to get total moments,

eg., at J, \/485% + 183>

= 518 N - m.

Start with point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the forque is present.

Atl, M, =468N-m, T, = 360N +m, M, = T, = 0

Assume generous fillet radius for gear at I.
From Table 7-1, estimate K, = 1.7, K,, = 1.5. For quick, conservative first
pass, assume Ky = K., K, = K.




Example 7-2 (continued)
Choose inexpensive steel, 1020 CD, with S,, = 469 MPa. ForsS,

Eq. (6-19) ko = aSu = 451(469) " =0.883
Guess k, = 0.9. Check later when d is known.

ko=k; =k =1
Eq. (6-18) S, = (0.883)(0.9)(0.5)(469) = 186 MPa

For first estimate of the small diameter at the shoulder at point I, use the
DE-Goodman criterion of Eq. (7-8). This criterion is good for the initial design,
since it is simple and conservative. With M,, = T, = 0, Eq. (7-8) reduces to

p {]6}1 (Z(KfM“) " [3(KﬁTm)2]lf2)}I/3
- % Sf‘-' Sm

e {16(1-5) (2(1.7)(468> L {31L5) (360)12}""*)}”3

m 186 x10° 469x10°
d =0.0432 m = 43.2 mm

All estimates have probably been conservative, so select the next standard size
below 43.2 mm and check, d = 42 mm.




Example 7-2 (continued)

A typical D/d ratio for support at a shoulder is D/d = 1.2, thus, D = 1.2 x 42 =
50.4 mm. Use D = 50 mm. A nominal 50-mm cold-drawn shaft diameter can be used.

Check if estimates were acceptable.
D/d = 50/42 =1.19

Assume fillet radius r = d/10= 4 mm, r/d = 0.1
K, = 1.6 (Fig. A-15-9), ¢ = 0.82 (Fig. 6-20)
Eq. (6-32) K,=1+ 0.82(1.6 — 1) = 1.49
K, = 1.35 (Fig. A-15-8), g, = 0.95 (Fig. 6-21)
Ke= 1 -5 0.05(1.35=1) =133
k, = 0.883 (no change)

42 —=(.107
Eq. (6-20) k, = ( 7.62) =(.833

S. = (0.883)(0.833)(0.5)(469) = 172 MPa

Eq. (7-5) o, F 1 = 1 = 96 MPa
md (0.042)
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Example 7-2 (continued)

(7-7) directly.

Note that we could have used Eq.

| | 16K, T, 212 \/3(16)(1.33)(360
Eq. (7-6) o, = [3( = ) } =1 (16)( )-(3 ) = 57 MPa
| , d | 7(0.042) I
Using Goodman criterion
| 1 | o) o, | 96 |57 |
He |8, S 172 469 _

wy S, 363
96 +57

= 2.5

Y ' 7 [
O-max o-a + O'm
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Example 7-2 (continued)

Also check this diameter at the end of the keyway, just to the right of point /,

and at the groove at point K. From moment diagram, estimate M at end of
keyway to be M = 443 N-m

Assume the radius at the bottom of the keyway will be the standard
r/d = 0.02, r = 0.02, d = 0.02(42) = 0.84 mm
K, = 2.14 (Fig. A-1518), ¢ = 0.65 (Fig. 6-20)
K/=1+ 0.65(2.14 — 1)/ = 1.74
K, = 3.0 (Fig. A~1549), g, = 0.9 (Fig. 6-21)
Ki=1+093—1) =28
, 32KeM,  32(1.74)(443)

o! : ~~ = 106 MPa
md 7(0.042)
KiTw  V/3(16)(2.8)(443
bl el gy tml [ VOVQNERERONT [ 1o p,
wd (0.042)
1 o | o 106 148
— -+ — -+ — i
777 [ 5 . 0 I B s ) 469 i
ne=1.08
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Example 7-2 (continued)

The keyway turns out to be more critical than the shoulder. We can either
increase the diameter or use a higher strength material. Unless the deflection
analysis shows a need for larger diameters, let us choose to increase the
strength. We started with a very low strength and can afford fo increase it
to avoid larger sizes. Try 1050 €D with § = 69 OMPa.

Recalculate factors affected by S, i.e., k, = S.; ¢ = Ky — o,

k, = 4.51(690) % = 0797, S, = 0.797(0.833)(0.5)(690) =229 MPa
g=072,K;=1+072(214 — 1) = 1.82
. 32(1.82)(443)

a, 3 = 110.8 MPa
7(0.042)
1 110.8 148
= + = 0.7
ny 229 690
ny = 143

Since the Goodman criterion is conservative, we will accept this as close enough

to the requested 1.5.
Check at the groove at K, since K, for flat-bottomed grooves are often very

high. From the forque diagram, note that no torque is present at the groove.
From the moment diagram, M, = 283 N-m, M,, = T, = T,, = 0. To quickly
check if this location is potentially critical, just use K, = K, = 5.0 as an
estimate, from Table 7-1.

~ 32KeM,  32(5)(283)  _ 194.5 MPa
Gel= 18 | | 3
7id 7(0.042)
S, 229
=% | Jads 1
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Example 7-2 (continued)

This is low. We will look up data for a specific retaining ring to obtain K, more
accurately. With a quick on-line search of a retaining ring specification using the
website www.globalspec.com, appropriate groove specifications for a retaining ring
for a shaft diameter of 42 mm are obtained as follows: width, a = 1.73 mm;
depth, t = 1.22 mm; and corner radius at bottom of groove, r = 0.25 mm. From
Fig. A-15-16, with r/t = 0.25/1.22 = 0.205, and a/t = 1.73/1.22 = 142

K, = 4.3, g = 0.65 (Fig. 6-20)
Kr=1+-0.:65(43 — 1) =315

B 32K:M, _ 32(3.15)(283)
wd’ (0.042)°
S, 229

= = =11.87
. g, 122.6

= 122.6 MPa

U4




Example 7-2 (continued)

Quickly check if point M might be critical. Only bending is present, and the
moment is small, but the diameter is small and the stress concentration is
high for a sharp fillet required for a bearing. From the moment diagram,
M, = 113{N'm, and M= T = T;| = 0.

Estimate K, = 2.7 from Table 7-1, d = 25 mm, and fillet radius r to fit a
typical bearing. |

r/d = 0.02, r = 0.02(25) = 0.5
g = 0.7 (Fig. 6-20)
K:=1+ (07)(27 — 1) = 2.19

32K:M,  32(2.19)(113)
L i = 161 MPa
I 7(0.025)

[ D, 2291
= = =140
0. 161

O-C!

This should be OK. It is close enough to recheck affter the bearing is selected.



Example 7-2 (continued)

With the diameters specified for the critical locations, fill in trial values for
the rest of the diameters, taking into account typical shoulder heights for
bearing and gear support.

D] 1= D7 = 25 mm

Dz T Dﬁ =38 mm

D3 T D5 = 42 mm

D4 = 50 mm
The bending moments are much less on the left end of the shaft, so D;, D,, and
D; could be smaller. However, unless weight is an issue, there is little advantage

to requiring more material removal. Also, the extra rigidity may be needed to
keep deflections small.



