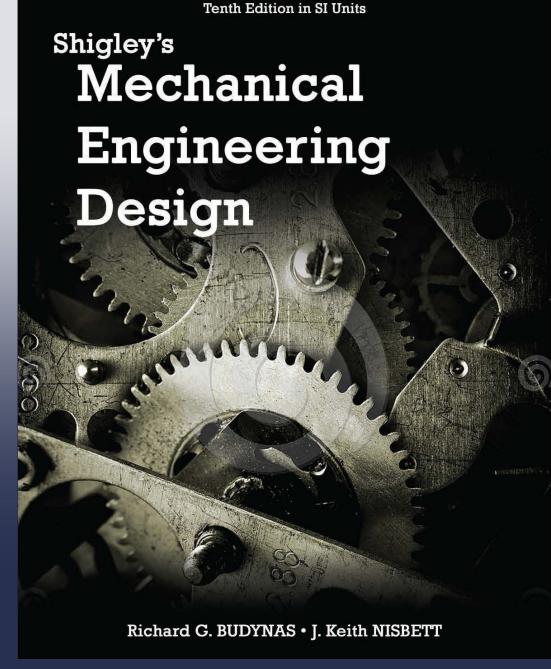


**Lecture Slides** 

Chapter 6

Fatigue Failure Resulting from Variable Loading



#### **Completely Reversing Simple Loading**

1 Determine  $S'_e$  either from test data or

p. 274 
$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \leq 200 \text{ kpsi } (1400 \text{ MPa}) \\ 100 \text{ kpsi} & S_{ut} > 200 \text{ kpsi} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases}$$
 (6–8)

2 Modify  $S'_e$  to determine  $S_e$ .

p. 279 
$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$
 (6–18) 
$$k_a = a S^b_{ut}$$
 (6–19)

#### Table 6-2

Parameters for Marin Surface Modification Factor, Eq. (6–19)

| Surface                | Factor a               |                       | Exponent |
|------------------------|------------------------|-----------------------|----------|
| Finish                 | S <sub>ut</sub> , kpsi | S <sub>ut</sub> , MPa | ь        |
| Ground                 | 1.34                   | 1.58                  | -0.085   |
| Machined or cold-drawn | 2.70                   | 4.51                  | -0.265   |
| Hot-rolled             | 14.4                   | 57.7                  | -0.718   |
| As-forged              | 39.9                   | 272.                  | -0.995   |

Rotating shaft. For bending or torsion,

p. 280 
$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < 254 \text{ mm} \end{cases}$$
(6–20)

For axial,

$$k_b = 1$$
 (6–21)

**Nonrotating member.** Use Table 6–3, p. 282, for  $d_e$  and substitute into Eq. (6–20) for d.

p. 282 
$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$
 (6–26)

p. 283 Use Table 6–4 for  $k_d$ , or

$$k_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4$$
(6-27)

pp. 284–285,  $k_e$ 

#### Table 6-5

Reliability Factors  $k_e$ Corresponding to
8 Percent Standard
Deviation of the
Endurance Limit

| Reliability, % | Transformation Variate $z_a$ | Reliability Factor $k_e$ |
|----------------|------------------------------|--------------------------|
| 50             | 0                            | 1.000                    |
| 90             | 1.288                        | 0.897                    |
| 95             | 1.645                        | 0.868                    |
| 99             | 2.326                        | 0.814                    |
| 99.9           | 3.091                        | 0.753                    |
| 99.99          | 3.719                        | 0.702                    |
| 99.999         | 4.265                        | 0.659                    |
| 99.9999        | 4.753                        | 0.620                    |

pp. 285–286, 
$$k_f$$

3 Determine fatigue stress-concentration factor,  $K_f$  or  $K_{fs}$ . First, find  $K_t$  or  $K_{ts}$  from Table A–15.

p. 287 
$$K_f = 1 + q(K_t - 1)$$
 or  $K_{fs} = 1 + q(K_{ts} - 1)$  (6–32)

Obtain q from either Fig. 6–20 or 6–21, pp. 287–288.

Alternatively, for reversed bending or axial loads,

p. 288 
$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}}$$
 (6–33)

For  $S_{ut}$  in kpsi,

$$\sqrt{a} = 0.245799 - 0.307794(10^{-2})S_{ut}$$
  
+0.150874(10<sup>-4</sup>) $S_{ut}^2 - 0.266978(10^{-7})S_{ut}^3$  (6–35)

For torsion for low-alloy steels, increase  $S_{ut}$  by 20 kpsi and apply to Eq. (6–35).

- 4 Apply  $K_f$  or  $K_{fs}$  by either dividing  $S_e$  by it or multiplying it with the purely reversing stress not both.
- Determine fatigue life constants a and b. If  $S_{ut} \ge 70$  kpsi, determine f from Fig. 6–18, p. 277. If  $S_{ut} < 70$  kpsi, let f = 0.9.

p. 277 
$$a = (f S_{ut})^2 / S_e$$
 (6–14)

$$b = -[\log(f S_{ut}/S_e)]/3 \tag{6-15}$$

6 Determine fatigue strength  $S_f$  at N cycles, or, N cycles to failure at a reversing stress  $\sigma_a$ 

(*Note*: this only applies to purely reversing stresses where  $\sigma_m = 0$ ).

p. 277 
$$S_f = aN^b$$
 (6–13)

$$N = (\sigma_a/a)^{1/b} {(6-16)}$$

#### Fluctuating Simple Loading

For  $S_e$ ,  $K_f$  or  $K_{fs}$ , see previous subsection.

1 Calculate  $\sigma_m$  and  $\sigma_a$ . Apply  $K_f$  to both stresses.

p. 293 
$$\sigma_m = (\sigma_{\text{max}} + \sigma_{\text{min}})/2$$
  $\sigma_a = |\sigma_{\text{max}} - \sigma_{\text{min}}|/2$  (6–36)

2 Apply to a fatigue failure criterion, p. 298

$$\sigma_m \geq 0$$

Soderburg 
$$\sigma_a/S_e + \sigma_m/S_y = 1/n$$
 (6–45)  
mod-Goodman  $\sigma_a/S_e + \sigma_m/S_{ut} = 1/n$  (6–46)  
Gerber  $n\sigma_a/S_e + (n\sigma_m/S_{ut})^2 = 1$  (6–47)  
ASME-elliptic  $(\sigma_a/S_e)^2 + (\sigma_m/S_{ut})^2 = 1/n^2$  (6–48)

$$\sigma_m < 0$$

p. 297 
$$\sigma_a = S_e/n$$

**Torsion.** Use the same equations as apply for  $\sigma_m \ge 0$ , except replace  $\sigma_m$  and  $\sigma_a$  with  $\tau_m$  and  $\tau_a$ , use  $k_c = 0.59$  for  $S_e$ , replace  $S_{ut}$  with  $S_{su} = 0.67S_{ut}$  [Eq. (6–54), p. 309], and replace  $S_v$  with  $S_{sv} = 0.577S_v$  [Eq. (5–21), p. 217]

3 Check for localized yielding.

p. 298 
$$\sigma_a + \sigma_m = S_y/n$$
 (6–49) or, for torsion, 
$$\tau_a + \tau_m = 0.577S_y/n$$

4 For finite-life fatigue strength (see Ex. 6–12, pp. 305–306),

mod-Goodman 
$$S_f = \frac{\sigma_a}{1 - (\sigma_m/S_{ut})}$$
 Gerber 
$$S_f = \frac{\sigma_a}{1 - (\sigma_m/S_{ut})^2}$$

If determining the finite life N with a factor of safety n, substitute  $S_f/n$  for  $\sigma_a$  in Eq. (6–16). That is,

$$N = \left(\frac{S_f/n}{a}\right)^{1/b}$$

#### **Combination of Loading Modes**

See previous subsections for earlier definitions.

1 Calculate von Mises stresses for alternating and midrange stress states,  $\sigma'_a$  and  $\sigma'_m$ . When determining  $S_e$ , do not use  $k_c$  nor divide by  $K_f$  or  $K_{fs}$ . Apply  $K_f$  and/or  $K_{fs}$  directly to each specific alternating and midrange stress. If axial stress is present divide the alternating axial stress by  $k_c = 0.85$ . For the special case of combined bending, torsional shear, and axial stresses

p. 310

$$\sigma_a' = \left\{ \left[ (K_f)_{bending}(\sigma_a)_{bending} + (K_f)_{axial} \frac{(\sigma_a)_{axial}}{0.85} \right]^2 + 3 \left[ (K_{fs})_{torsion}(\tau_a)_{torsion} \right]^2 \right\}^{1/2}$$

$$(6-55)$$

$$\sigma'_{m} = \left\{ \left[ (K_{f})_{bending}(\sigma_{m})_{bending} + (K_{f})_{axial}(\sigma_{m})_{axial} \right]^{2} + 3 \left[ (K_{fs})_{torsion}(\tau_{m})_{torsion} \right]^{2} \right\}^{1/2}$$

$$(6-56)$$

- 2 Apply stresses to fatigue criterion [see Eq. (6–45) to (6–48), p. 338 in previous subsection].
- 3 Conservative check for localized yielding using von Mises stresses.

p. 298 
$$\sigma'_a + \sigma'_m = S_y/n$$
 (6–49)