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CHAPTER OBJECTIVES
.

e How to find the time response from the
transfer function

e How to use poles and zeros to determine the
response of a control system

e How to describe quantitatively the transient
response of first- and second-order systems

e How to approximate higher-order systems as
first or second order



POLES, ZEROS, AND SYSTEM RESPONSE
e

e POLES OF A TRANSFER FUNCTION

e ZEROS OF A TRANSFER FUNCTION

e FIRST-ORDER SYSTEMS

e SECOND-ORDER SYSTEMS

o SYSTEM RESPONSE WITH ADDITIONAL POLES
e SYSTEM RESPONSE WITH ZEROS



The Periormance of Control Systems
.

® Test input signals

® Transient response and Steady-state response
e Absolute stability, relative stability

e Steady-state error



Typical Test Signal
e

e Step functions

e Ramp functions

e Acceleration functions
e Impulse functions

e Sinusoidal functions

o

White noise signals



Typical Test Signal
e ——

Input Input
0 Time © Time
Step functions Ramp functions

-1 FEO)- ()=t F(s)==

S S



Typical Test Signal

...
Input

Input Sinusoidal functions

npe |

0 Time

— .o
f(t)=sin ot; F(s)= s + @ Impulse functions

f(t)=cosat; F(s)= szj _ Unit impulse =5(t); F(s)=1
Q




POLES AND ZEROS OF A FIRST-ORDER
SYNTEM: AN EXAMPLE

. (5 4 2) A B 2/5 3/5
Cls) = — - — T — — (4.1
LT 5) s s+5 5§ 545 4.1
wher
2
A= = —
5 3
B 3
. 5
Thus,
2 3
=—4 —¢ (4.2)
5 5



POLES AND ZEROS OF A FIRST-ORDER
SYNTEM: AN EXAMPLE

Input pole System zero System pole

Jjm
A
Output
transform
] s-plane
G(s) Output
RO=5 [s+2] CO - time |
"I5+5 . X—O . response
- —5 _2 I 1 1
Forced response  Natural response
()

(a) (b)



POLES AND ZEROS OF A FIRST-ORDER

SYNTEM: AN EXAMPLE

Evaluating response using poles

Problem: Given the system of Figure 4.3, write the output, (1), in general terms.

Specity the torced and natural parts of the solution.

SOLUTION: By mmspection, each system pole generates an expo-
nential as part of the natural response. The input’s pole generates the
torced response. Thus,

Cls) Ki K> K3 Ky
AE)= — += — == = =T -
5 (s+2) (s+4) (54 3)
| | 1 |
Forced M atural
response response

Taking the inverse Laplace transtorm, we get

i 5 - " j - - -
clt)= K| + Kre 4 4 Kse g Kye 5t

Forced Matural

I-;:'-||HZ-II'11: I-;:*-|HZ-II*1-;:

-’?[-x?=_—E. s+ 3)

.
o

[_'H. + Ell['\-\. + 4]I'-\. + 5]

Ci %)
-

FIGURE 4.3 System for Example 4.1

(4.3)

(4.4)



POLES AND ZEROS OF A FIRST-ORDER
SYNTEM: AN EXAMPLE

Jjw
Pole at —« generates A
response Ke~*!

N\

s-plane

7S
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FIRST-ORDER SYSTEM)




FIRST-ORDER SYSTEM)

R(s) a C(s)

(@) (b)

Taking the inverse transform, the step response 1s given by

a
. . FEU L U p
55+ a) e(f) =celt) +cp(t) =1 -

Cl(s) = R(s)G(s) =




c(r)

FIRST-ORDER SYSTEMS
N
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FIRST-ORDER SYSTEMS

o TIME CONSTANT
e RISE TIME, Tr
e SETTLING TIME, Ts

231 0.11 212

T, =

i i L




Unit-Step Response of First-Order Systems
e

Transfer function of the first-order system

C(s 1 1
%:TS” >C(S)=TS+1R(S)

1
For unit-step function ~ R(S) =~

S




Unit-Step Response of First-Order Systems
.

Inverse Laplace transiorm

_t
C(t) —1—e T fort >0
(() = Force response + Free response
and =T c(t)=1-e" =0.632



Unit-Step Response of First-Order Systems
.

|
dny  pPe=g

|

0.632

Unit-Step response



second-Order Systems

In transfer function (Laplace Transform)

Kw?
XA (S) = L F (s
o(8) 82+2§a)ns+a)§ (5)

2
Xo(8) _ : Kao; _—G(s)
F(Ss) s +2w S+




second-Order Systems

1.Overdamped ¢ >1
2.Critically damped (¢ =1
3.Undamped ¢ =0
4. Underdamped 0<¢ <1



second-Order Systems

1. Overdamped responses

Poles: Two real at —oy, —a2

Natural response: Two exponentials with time constants equal to the reciprocal of the

pole locations, or A ; . . .
clt) = Kje ™V + Kpe™ ™

. Underdamped responses
Poles: Two complex at —og + juyg

Matural response: Damped sinusoid with an exponential envelope whose time constant
15 equal to the reciprocal of the pole’s real part. The radian frequency of the sinusoid,

the damped frequency of oscillation, 1s equal to the imaginary part ot the poles, or
clf) = Ae ”‘*‘rcﬂﬂ:'mﬂ-r )

. Undamped responses

Poles: Two imaginary at 4 joy

MNatural response: Undamped sinusoid with radian frequency equal to the imaginary

art of the poles, or
p po clt) = Acos(ant — ¢)



second-Order Systems

c(t)

20 -
1.8 [
1.6 [
1.4 -
12
1.0 -
08 -
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Undamped

Under-
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Critically

damped

Overdamped




second-Order Systems

System Pole-zero plot Response
G(s)
I
R(s)= % C(s)
(a) 2 b e
s“+as+b

General

" o) clfy=1+0,171e B4
_“’, ]‘ I I";l:(-] | 441
G(s) s-plane R
] .
Ris)= = Q9 Cly) %
(b) e ] ) ) ’ o #‘ 44 N
ST +8s '+ -7.854 —-1.146 03
Overdamped

|
o 1 2 3 4 5



second-Order Systems

j
G( ) s-plane 4 B
.
l & j'lx
, . R(s)= % Q C(s)
(c) — — . g
S+ 25+ 9 1
Underdamped X -1hM

(1)
I .44_

l 2
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0.4
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second-Order Systems

(1)
‘jm __"_ o) =1 —cos 3t
s-plane -
G(s) 7
| ,
oo R(S)= % Cl(s) k4
(g, oD 8 1L
\ e Y “‘/3
Undamped
| I

0O 1 2 3 4



second-Order Systems

G(y)

)

s-plane
C(s)

(e)

s+ bHy+ 9
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jo

“

X

_';

= ()

cll)

0.8
0.6

0.4
0.2

"

()

Clf) = l — .\’1'('

l_(.




second-Order Systems

g Poles Step response
Je o(r)
A |
. s-plane
£ JWy 3
() - (F
X _j"’n -
Undamped
jw s-plane (1)
A ; , 4
X Jy \[1 = g2
0<( < - (7
Cw,
X Ja \ 1= &2 Underdamped




second-Order Systems
.

Ja o)

s-plane

I
|
%<

=
Cm,,
Cnitucally damped
) J ((,)
— 52— ‘
Cw+m, o<1 !
\ s-plane
ag T —¥ X -7
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Overdamped



second-Order Systems

g Poles Step response
j(l) (_.( I)
A l
4 oo s-plane
(0 = (F
X —jw,
Undamped



Undamped Second-Order Systems Response
S

Let us begin by finding the step response for the general second-order system of
Eq. (4.22). The transtform of the response, C(s), 1s the transform of the input times the
transfer function, or

-

W, K Kys + K
Cls) =375 e — et ——— (4.26)
S(5° + 2wps +ws) 5 57+ 2lwps + w;

where it 1s assumed that ¢ < 1 (the underdamped case). Expanding by partial fractions,
using the methods described in Sectuon 2.2, Case 3, vields

1 (5 + Cay) +;ﬂm”w | — &2

| — &
Cls) =—— (4.27)
s (s + Con)* + w2(1 — 2)




Undamped Second-Order Systems Response

c(wyt)

o) Il

N

0 o\

(4.28)



Undamped Second-Order Systems Response
S

c(t)
A
Cmax -
1.02¢ina |
Cfinal > / N
0.98¢ipal
0.9¢final
0.1 Cfinal >
-/
- 7, = T y

P



Undamped Second-Order Systems Response
<

1. Rise time, T,.. The time required for the waveform to go from (.1 of the final value to
(0.9 of the final value.

2. Peak rime, Tp. The time required to reach the first, or maximum, peak.

3. Percentovershoot, 9%0S8. The amount that the waveform overshoots the steady-state,
or final, value at the peak time, expressed as a percentage of the steady-state value.

4, Sertling time, T,. The time required for the transient’s damped oscillations to reach
and stay within £2% of the steady-state value.



Undamped Second-Order Systems Response
<

iT

T — —
P

708 = e~ ETVI=T) w100

~1n (% 0S8/ 100)
/
\/ 72 + In* (%.0S/100)

,:':




Undamped Second-Order Systems Response

Percent overshoot, %08

0 01 02 03 04 05 06 07 08 09
Damping ratio,



Undamped Second-Order Systems Response
.

Damping |Normalized
A ratio rise time
30 0.1 1.104

i 0.2 1.203
5y 4 0.3 1.321
S 26 0.4 1.463
=2

; .63

224t o o
_ 0.6 1.854
E oo 0.7 2.126
Z 20k 0.8 2.467
X 0.9 2.883
2 18
2 16
Z

— e
(LS T SN

=)
Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio



Undamped Second-Order Systems Response

_________ - +jw,V1 - 8% =joy

W, s-plane

-

Yoo L —jw,V1- 22 =—jay




Undamped Second-Order Systems Response




Undamped Second-Order Systems Response

Envelope the same

= (F




Undamped Second-Order Systems Response
<

c(t)

.
Frequency the same 5 53 jw
v “
1 — N
2 s-plane
= ()
Pole
motion
——
2 ]
- [

(b)



Undamped Second-Order Systems Response

c(r)

Same overshoot

3 j(l)
3 . 14
I s-plane
Pole
motion
|
2

3

- (J




SYSTEM RESPONSE WITH ADDITIONAL POLES

Jjw jm
P1 py A
s-plane X s-plane s-plane
P3 P3
xX— - ¥ - - (7 — = (7
_,lrl =Cwy, — =&y, =&y, |
X X X |
P2 P2 P2
Case | Case Il Case III
(a)
Response
A
111 Au(t) + ¢ (B cos wyt + C sin wyf)
Il
Case |
0
I De™ %
Case |
= Time

(b)



SYSTEM RESPONSE WITH ADDITIONAL ZEROS

1.4
1.2 F
4
9 1.0
N
‘é 0.8 zero at —3
E zero at —5
< 06 zero at —10
0.4 no zero
0.2
| | 1 e
0 2.0 4.0 6.0

Time (seconds)



