MECHANICAL SYSTEM

System & Control Engineering Lab. School of Mechanical Engineering

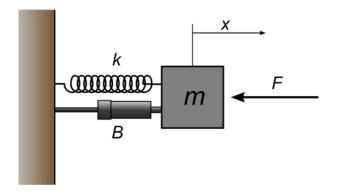
MECHANICAL SYSTEM

• Part-I: Translational Mechanical System

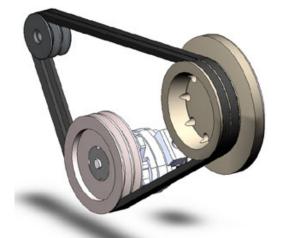
- Part-II: Rotational Mechanical System
- Part-III: Mechanical Linkages

Basic Types of Mechanical Systems

- Translational
 - Linear Motion



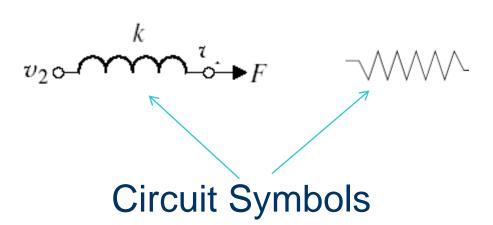
- Rotational
 - Rotational Motion



Translational Spring

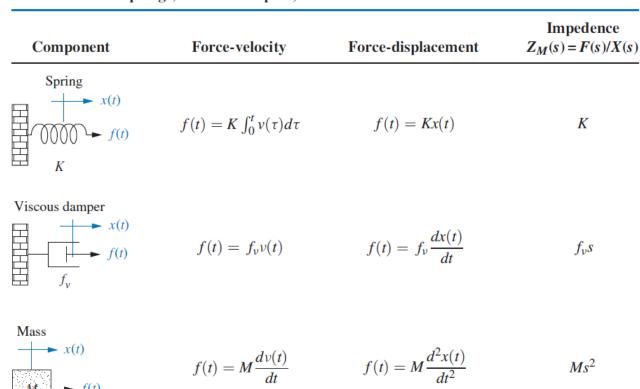
• A translational spring is a mechanical element that can be deformed by an external force such that the deformation is directly proportional to the force applied to it.

Translational Spring

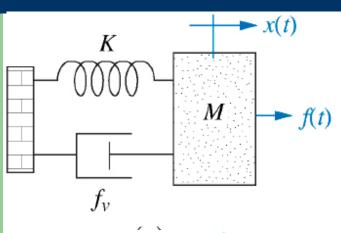


Translational Spring

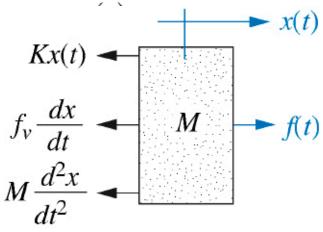
TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass



Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_{\nu} = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).



$$M\frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t)$$



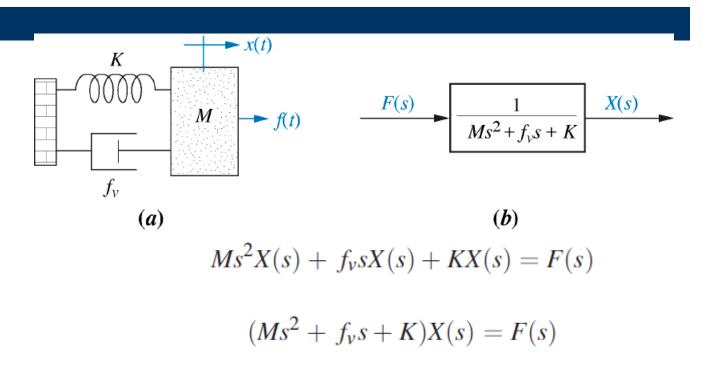
(a)

$$KX(s) \longrightarrow X(s)$$

$$f_{v}sX(s) \longrightarrow M \longrightarrow F(s)$$

$$Ms^{2}X(s) \longrightarrow F(s)$$

(b)

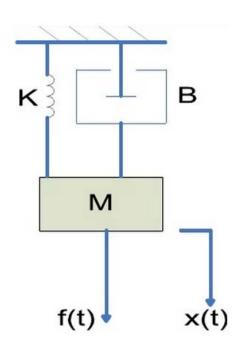


Transfer function

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_v s + K}$$

Example

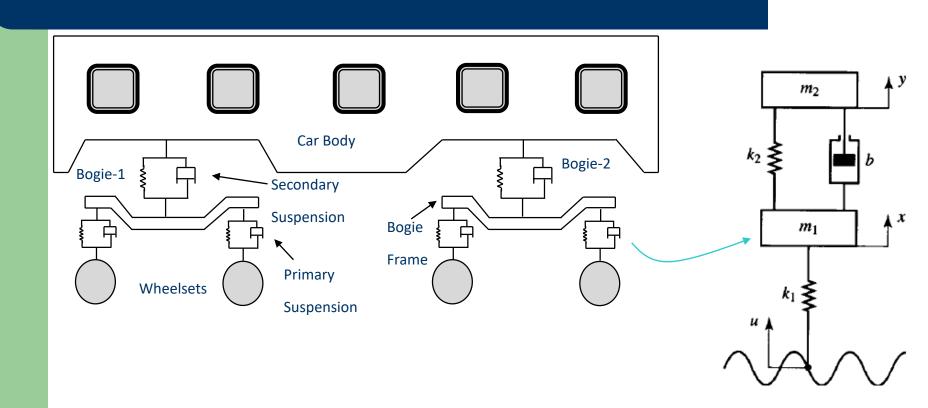
 Find the transfer function of the mechanical translational system



Free Body Diagram

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + k}$$

Example: Train Suspension



Example: Train Suspension

Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain

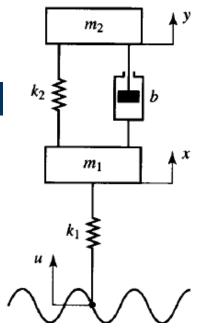
$$m_1\ddot{x} + b\dot{x} + (k_1 + k_2)x = b\dot{y} + k_2y + k_1u$$

 $m_2\ddot{y} + b\dot{y} + k_2y = b\dot{x} + k_2x$

$$m_2$$
 k_2
 m_1
 k_1
 k_1
 k_1

$$[m_1s^2 + bs + (k_1 + k_2)]X(s) = (bs + k_2)Y(s) + k_1U(s)$$
$$[m_2s^2 + bs + k_2]Y(s) = (bs + k_2)X(s)$$

Example: Train Suspension



Eliminating X(s) from the last two equations, we have

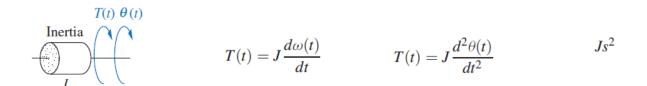
$$(m_1s^2 + bs + k_1 + k_2) \frac{m_2s^2 + bs + k_2}{bs + k_2} Y(s) = (bs + k_2)Y(s) + k_1U(s)$$

which yields

$$\frac{Y(s)}{U(s)} = \frac{k_1(bs + k_2)}{m_1 m_2 s^4 + (m_1 + m_2) b s^3 + [k_1 m_2 + (m_1 + m_2) k_2] s^2 + k_1 b s + k_1 k_2}$$

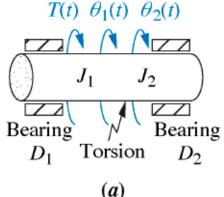
TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational relationships for springs, viscous dampers, and inertia

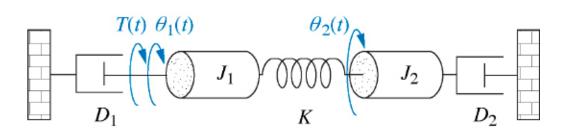
Component	Torque- angular velocity	Torque- angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
Spring K	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
Viscous $T(t)$ $\theta(t)$ damper	$T(t) = D\omega(t)$	$T(t) = D\frac{d\theta(t)}{dt}$	Ds



Transfer function

$$\frac{\theta_2(s)}{T(s)}$$





(b)

$$\sum M = J_1 \ddot{\theta_1}$$

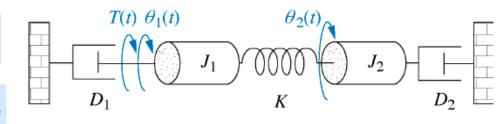
$$T(t) - D_1 \dot{\theta}_1 - K(\theta_1 - \theta_2) = J_1 \ddot{\theta}_1$$

$$\sum M = J_2 \ddot{\theta}_2$$

$$-D_2\dot{\theta}_1 + K(\theta_1 - \theta_2) = J_2\ddot{\theta}_2$$

$$T(t) - D_1 \dot{\theta}_1 - K(\theta_1 - \theta_2) = J_1 \ddot{\theta}_1$$

$$J_1 \ddot{\theta_1} + D_1 \dot{\theta_1} + K\theta_1 - K\theta_2 = T(t)$$



$$J_1 s^2 \theta_1(s) + D_1 s \theta_1(s) + K \theta_1(s) - K \theta_2(s) = T(s)$$

$$-D_2\dot{\theta}_2 + K(\theta_1 - \theta_2) = J_2\ddot{\theta}_2$$

$$J_2\ddot{\theta}_2 + D_2\dot{\theta}_2 + K\theta_2 - K\theta_1 = 0$$

$$J_2 s^2 \theta_2(s) + D_2 s \theta_2(s) + K \theta_2(s) - K \theta_1(s) = 0$$

$$\left(J_2 s^2 + D_2 s + K\right) \theta_2(s) = K \theta_1(s) \to \theta_1(s) = \left(\frac{J_2 s^2 + D_2 s + K}{K}\right) \theta_2(s)$$

$$(J_1 s^2 + D_1 s + K)\theta_1(s) - K\theta_2(s) = T(s)$$

$$(J_1 s^2 + D_1 s + K) \left(\frac{J_2 s^2 + D_2 s + K}{K}\right) \theta_2(s) - K\theta_2(s) = T(s)$$

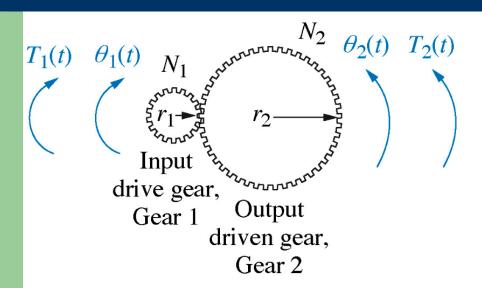
$$\left(\frac{(J_{1}s^{2} + D_{1}s + K)(J_{2}s^{2} + D_{2}s + K)}{K} - K\right)\theta_{2}(s) = T(s)$$

$$\left(\frac{(J_{1}s^{2} + D_{1}s + K)(J_{2}s^{2} + D_{2}s + K) - K^{2}}{K}\right)\theta_{2}(s) = T(s)$$

Transfer function

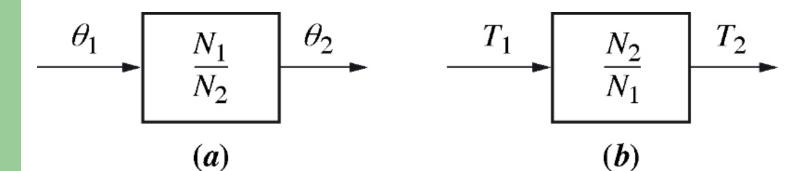
$$\frac{\theta_{2}(s)}{T(s)} = \frac{K}{(J_{1}s^{2} + D_{1}s + K)(J_{2}s^{2} + D_{2}s + K) - K^{2}}$$

TRANSFER FUNCTIONS FOR SYSTEMS WITH GEARS

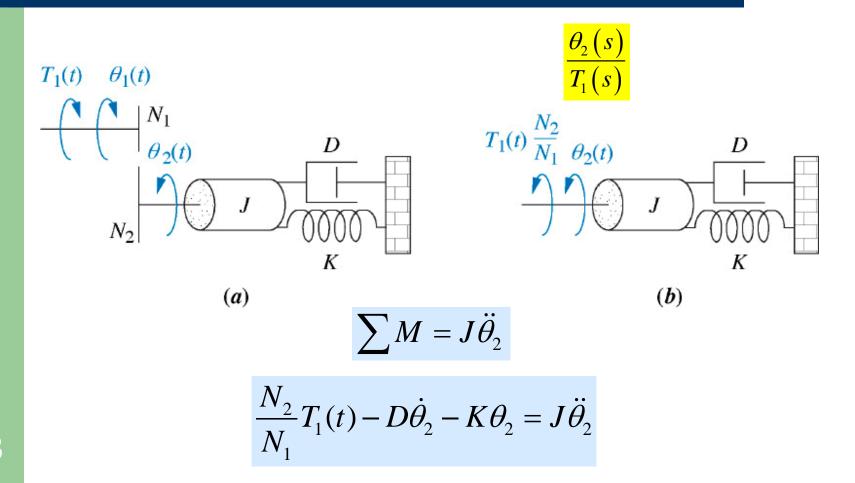


$$\frac{\theta_2}{\theta_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2}$$

$$\frac{T_2}{T_1} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}$$



TRANSFER FUNCTIONS FOR SYSTEMS WITH GEARS



TRANSFER FUNCTIONS FOR SYSTEMS WITH GEARS

$$T_1(t)$$
 $\theta_1(t)$
 N_1
 $\theta_2(t)$
 N_2
 N_2
 M_1
 M_2
 M_2
 M_2
 M_2
 M_3
 M_4
 M_1
 M_2
 M_3
 M_4
 M_5
 M_7
 M_1
 M_2
 M_3
 M_4
 M_5
 M_5

$$\frac{N_2}{N_1}T_1(t) = J\ddot{\theta}_2 + D\dot{\theta}_2 + K\theta_2$$

$$\frac{N_2}{N_1}T_1(s) = Js^2\theta_2(s) + Ds\theta_2(s) + K\theta_2(s)$$

$$\frac{N_2}{N_1}T_1(s) = \left(Js^2 + Ds + K\right)\theta_2(s)$$

$$\frac{\theta_2(s)}{T_1(s)} = \frac{N_2/N_1}{Js^2 + Ds + K}$$