Modeling in the Frequency Domain

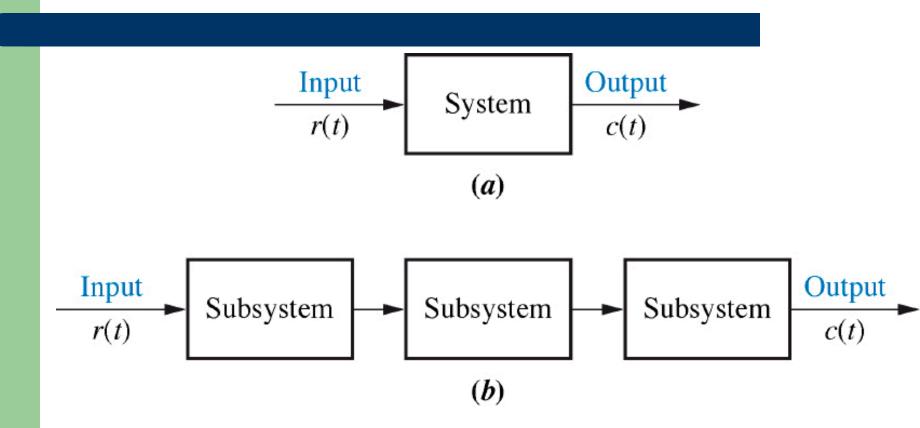
$$\frac{R(s)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)} \xrightarrow{C(s)}$$

System & Control Engineering Lab. School of Mechanical Engineering

CHAPTER OBJECTIVES

- Review the Laplace transform
- Learn how to find a mathematical model, called a transfer function, for linear, timeinvariant electrical, mechanical, and electromechanical systems
- Learn how to linearize a nonlinear system in order to find the transfer function

Block Diagram



Note: The input, r(t), stands for *reference input*. The output, c(t), stands for *controlled variable*.

LAPLACE TRANSFORM REVIEW

$$\mathscr{L}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st} dt$$
(2.1)

 TABLE 2.1
 Laplace transform table

Item no.	f(t)	F(s)	
1.	$\delta(l)$	1	
2.	u(t)	1	
3.	tu(t)	$\frac{s}{1}$	
4.	$l^n u(t)$	$\frac{s^2}{n!}$	
5.	$e^{-at}u(t)$	s^{n+1}	
6.	$\sin \omega t u(t)$	$\frac{s+a}{\omega}{\overline{s^2+\omega^2}}$	
7.	$\cos \omega t u(t)$	$\frac{s^2 + \omega^2}{s^2 + \omega^2}$	

LAPLACE TRANSFORM REVIEW

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$) = $\int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$[t] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathscr{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - s f(0-) - f(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[rac{d^nf}{dt^n} ight]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{1}f(\tau)d\tau\right]$	$\left[= \frac{F(s)}{s} \right]$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹

5

TRANSFER FUNCTIONS

$$R(s) = \frac{(b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)} C(s)$$

$$\frac{C(s)}{R(s)} = G(s) = \frac{(b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)}$$

6

TRANSFER FUNCTIONS OF PHYSICAL SYSTEMS

- ELECTRICAL NETWORK TRANSFER FUNCTIONS
- TRANSLATIONAL MECHANICAL SYSTEM TRANSFER FUNCTIONS
- ROTATIONAL MECHANICAL SYSTEM TRANSFER FUNCTIONS
- TRANSFER FUNCTIONS FOR SYSTEMS WITH GEARS
- ELECTROMECHANICAL SYSTEM TRANSFER FUNCTIONS
- ELECTRIC CIRCUIT ANALOGS

- Part-I: Electrical Systems
 - Basic Elements of Electrical Systems
 - Equations for Basic Elements
 - Examples
- Part-II: Electronic Systems
 - Operational Amplifiers
 - Inverting vs Non-inverting
 - Examples

Basic Elements of Electrical Systems

 The time domain expression relating voltage and current for the resistor is given by Ohm's law i-e

$$v_R(t) = i_R(t)R$$

• The Laplace transform of the above equation is

$$V_R(s) = I_R(s)R$$

Basic Elements of Electrical Systems

• The time domain expression relating voltage and current for the Capacitor is given as:

$$v_c(t) = \frac{1}{C} \int i_c(t) dt$$

• The Laplace transform of the above equation (assuming there is no charge stored in the capacitor) is

$$V_c(s) = \frac{1}{Cs} I_c(s)$$

10

Basic Elements of Electrical Systems

Inductor

• The time domain expression relating voltage and current for the inductor is given as:

$$v_L(t) = L \frac{di_L(t)}{dt}$$

• The Laplace transform of the above equation (assuming there is no energy stored in inductor) is

$$V_L(s) = LsI_L(s)$$

V-I and I-V relations

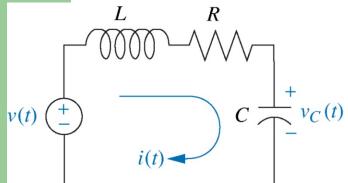
Componen t	Symbol	V-I Relation	I-V Relation
Resistor		$v_R(t) = i_R(t)R$	$i_R(t) = \frac{v_R(t)}{R}$
Capacitor		$v_c(t) = \frac{1}{C} \int i_c(t) dt$	$i_c(t) = C \frac{dv_c(t)}{dt}$
Inductor		$v_L(t) = L \frac{di_L(t)}{dt}$	$i_L(t) = \frac{1}{L} \int v_L(t) dt$

TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductor	TABLE 2.3	Voltage-current,	voltage-charge,	and impedance	relationships for	capacitors,	resistors, and inductors
--	-----------	------------------	-----------------	---------------	-------------------	-------------	--------------------------

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
─ (Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-////- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L\frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) \ d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V(volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega (ohms)$, $G = \Omega (mhos)$, L = H (henries).

² Passive means that there is no internal source of energy.



i(t) = dq(t)/dt

$$\sum v_{drop} = 0$$

$$v_L + v_R + v_C - v = 0$$

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int_0^t i(\tau) d\tau = v(t)$$

$$L\frac{d^2q(t)}{dt^2} + R\frac{dq(t)}{dt} + \frac{1}{C}q(t) = v(t)$$

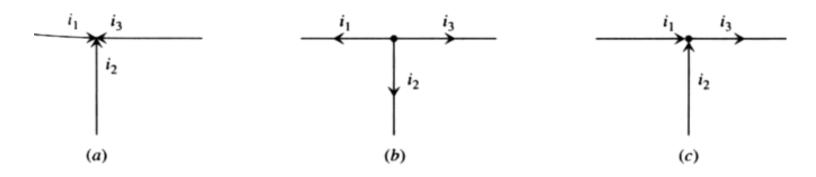
$$q(t) = C v_C(t)$$

$$LC \frac{d^2 v_C(t)}{dt^2} + RC \frac{d v_C(t)}{dt} + v_C(t) = v(t)$$

$$(LCs^2 + RCs + 1)V_C(s) = V(s)$$

Kirchhoff's Current Law (KCL), Node method

$$\sum \left(i_k\right)_{in} = 0$$



 $i_1 + i_2 + i_3 = 0$ $-(i_1 + i_2 + i_3) = 0$ $i_1 + i_2 - i_3 = 0$

Impedance Method

$$\frac{V(s)}{I(s)} = Z(s)$$

For the capacitor,

$$V(s) = \frac{1}{Cs}I(s)$$

For the resistor,

$$V(s) = RI(s)$$

For the inductor,

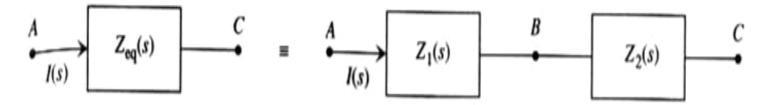
$$V(s) = LsI(s)$$

17

Elements of Electrical System: Impedance Method

Theorem 1. If there are *n* impedance in **series**

$$Z_{eq}(s) = Z_1(s) + Z_2(s) + \dots + Z_n(s)$$

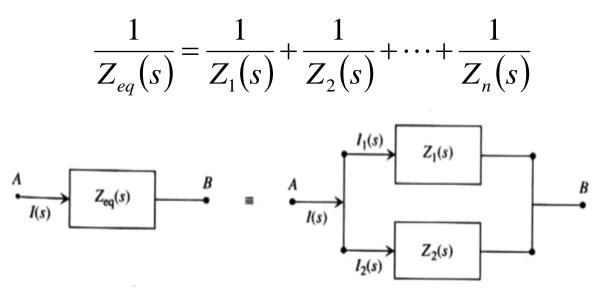


Equivalent impedance for two impedances in series

$$Z_{eq}(s) = Z_1(s) + Z_2(s)$$

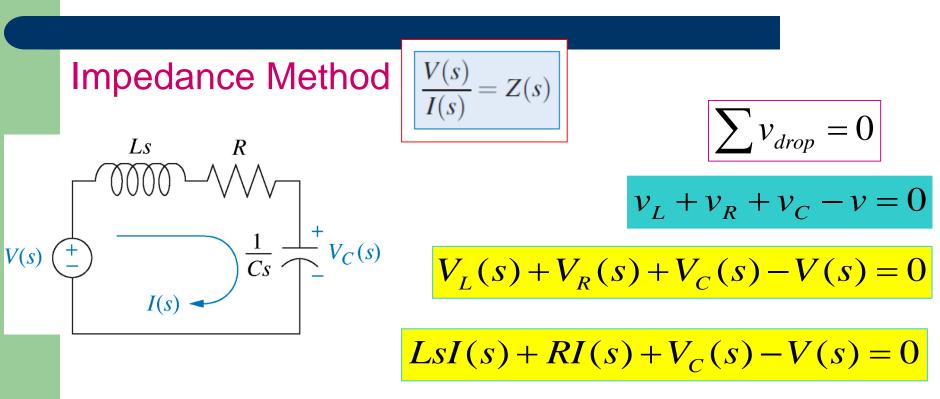
Elements of Electrical System

Theorem 2. If there are *n* impedance in **parallel**



Equivalent impedance for two impedances in parallel

$$\frac{1}{Z_{eq}(s)} = \frac{1}{Z_1(s)} + \frac{1}{Z_2(s)}$$



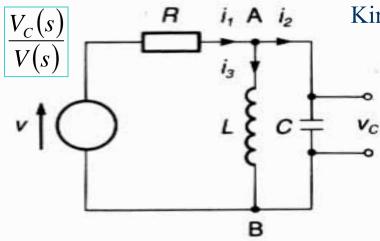
 $Ls(CsV_{C}(s)) + R(CsV_{C}(s)) + V_{C}(s) - V(s) = 0$ $(LCs^{2} + RCs + 1)V_{C}(s) = V(s)$

20

$$V(s) \stackrel{+}{=} \underbrace{I(s)}_{I(s)} \underbrace{I(s)}_{R} \underbrace{I(s)}_{R}$$

$$\left(LCs^{2} + RCs + 1\right)V_{C}(s) = V(s)$$

$$\frac{V_C(s)}{V(s)} = \frac{1}{LCs^2 + RCs + 1}$$



Kirchhoff's Current Law (KCL), Node method

$$\sum_{k} \left(i_k \right)_{in} = 0$$

$$i_1 - i_2 - i_3 = 0 \Leftrightarrow i_2 + i_3 = i_1$$

$$i_1 = \frac{v - v_A}{R}, i_2 = C \frac{dv_A}{dt}, i_3 = \frac{1}{L} \int v_A dt$$

$$v_A = v_C$$

$$v = RC\frac{dv_C}{dt} + v_C + \frac{R}{L}\int v_C dt$$

$$V(s) = RCsV_{C}(s) + V_{C}(s) + \frac{R}{L}\frac{1}{s}V_{C}(s)$$

Transfer function

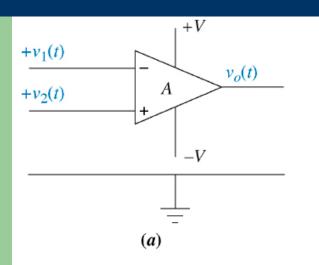
$$\frac{V_C(s)}{V(s)} = \frac{Ls}{LRCs^2 + Ls + R}$$

OPERATIONAL AMPLIFIERS

Description	PIC18F25J11	PIC24F16KA102
Packaging	28 Pin PDIP	28 Pin PDIP
	Contraction	- ALTER THE A
Register	8 Bit	16 Bit
Program Memory	16 KByte	16 KByte
Instruction Clock	4 Cycles	2 Cycles
Price	USD 2.70	USD 2.41
Development Tools	Microchip MPLAB and Microchip	Microchip MPLAB and Microchip
	C18 or Microchip HI-TECH C for	C30, Microchip HI-TECH C for
	PIC18 C Compiler	dsPIC/PIC24 C Compiler
Peripherals	Advance	More Advance
Speed	Up to 12 MIPS at 48 MHz	Up to 16 MIPS at 32 MHz

Microchin PIC18F25.I11 and PIC24F16KA102 Microcontroler Basic Comparison

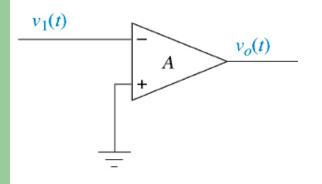
OPERATIONAL AMPLIFIERS



- Inverting Op-Amp
- Non-inverting Op-Amp

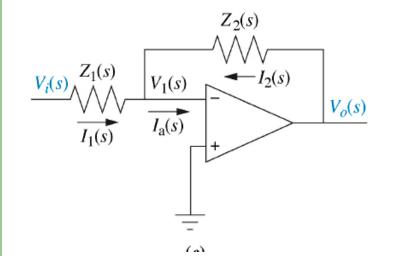
- **1.** Differential input, $v_2(t) v_1(t)$
- **2.** High input impedance, $Z_i = \infty$ (ideal)
- **3.** Low output impedance, $Z_o = 0$ (ideal)
- **4.** High constant gain amplification, $A = \infty$ (ideal)

INVERTING OPERATIONAL AMPLIFIERS



27

 $v_0(t) = -Av_1(t)$



 $I_a(s) = 0$

 $I_1(s) = -I_2(s)$

INVERTING OPERATIONAL AMPLIFIERS

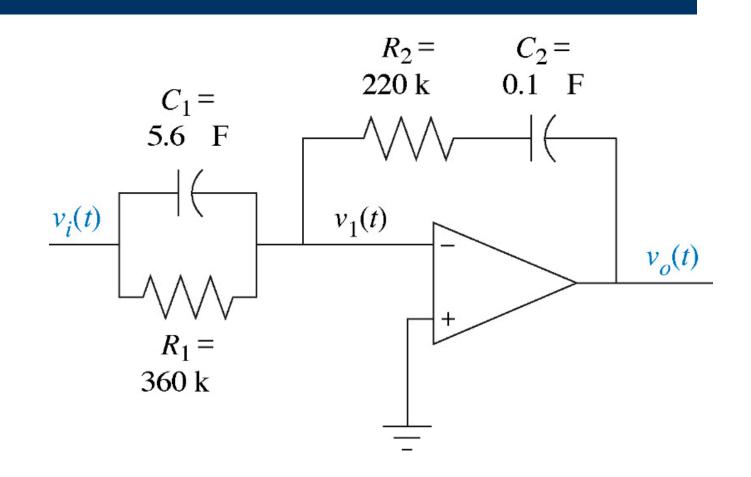
$$I_1(s) = \frac{V_i(s)}{Z_1(s)}$$

$$I_2(s) = \frac{V_0(s)}{Z_2(s)}$$

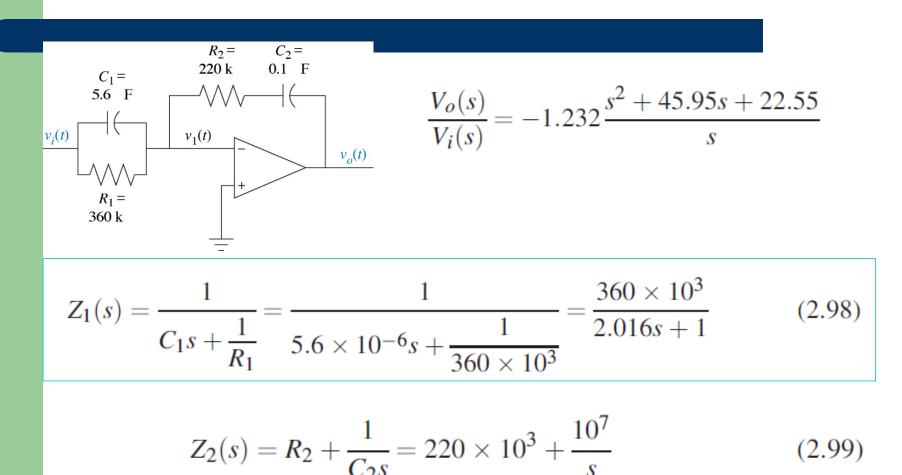
Transfer function

 $\frac{V_0(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$

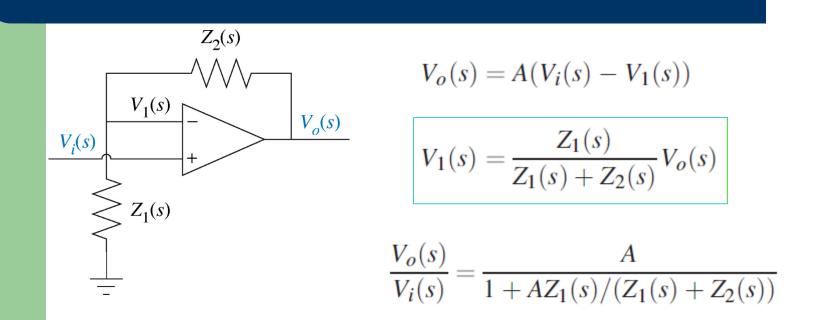
INVERTING OPERATIONAL AMPLIFIERS: PID Controller



INVERTING OPERATIONAL AMPLIFIERS: PID Controller



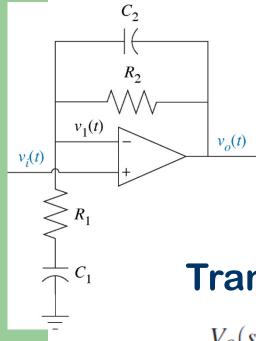
NON-INVERTING OPERATIONAL AMPLIFIERS



For large A, we disregard unity in the denominator

$$\frac{V_o(s)}{V_i(s)} = \frac{Z_1(s) + Z_2(s)}{Z_1(s)}$$

NON-INVERTING OPERATIONAL AMPLIFIERS



$$Z_1(s) = R_1 + \frac{1}{C_1 s}$$

$$Z_2(s) = \frac{R_2(1/C_2s)}{R_2 + (1/C_2s)}$$

Transfer function

$$\frac{V_o(s)}{V_i(s)} = \frac{C_2 C_1 R_2 R_1 s^2 + (C_2 R_2 + C_1 R_2 + C_1 R_1) s + 1}{C_2 C_1 R_2 R_1 s^2 + (C_2 R_2 + C_1 R_1) s + 1}$$