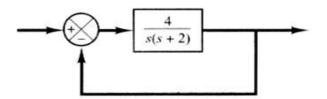

Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Control System Design: Lead Compensator

Control system diagram in unity feedback


 $G_{C}(s)$ – Compensator / Controller; G(s) – Plant / Transfer function

Lead compensation techniques based on the frequency response approach

Lead compensator transfer function

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+1/T}{s+1/\alpha T}; \qquad 0 < \alpha < 1$$

Example Lead design; Desired system is K_v of 20 sec⁻¹, PM is at least 50° and GM is at least 10 dB

Determine and analysis of previous information

Open-loop TF is

; Туре_____

Closed-loop TF is

Closed-loop poles are _____

Bandwidth frequency $(\omega_{BW}) =$ _____rad/sec

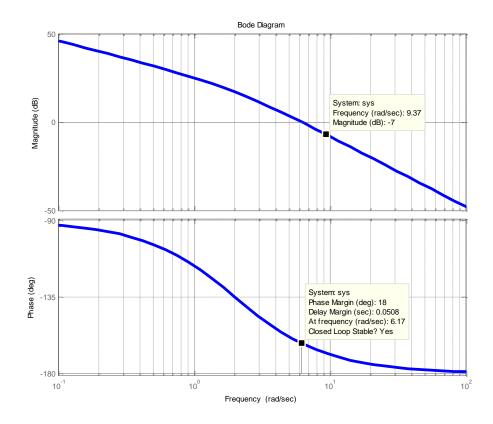
Gain margin(GM) = _____ dB; Phase margin(PM) = _____ degree

Static velocity error constant (K_v) = _____ sec⁻¹

Settling time = _____sec (5% error)

<u>Step I:</u> Determine total gain (K) of open-loop TF to satisfy the requirement on the given static velocity error constant (K_v)= 20

$$K_{\nu} = \lim_{s \to 0} sG_c(s)G(s) = \lim_{s \to 0} s\left(K_c \alpha \frac{Ts+1}{\alpha Ts+1}\right) \left(\frac{4}{(s+2)s}\right) = 20$$


where $K_c \alpha = K$, thus

$$4K = 20(2) = 40 \rightarrow K = 10$$

New open-loop transfer function

$$G_0(s) = \frac{40}{(s+2)s} = \frac{40}{s^2 + 2s}$$

Step II: Plot bode diagram of open-loop TF with new gain such as

Phase margin(PM)= 18 deg. at 6.17 rad/sec ; Gain margin(GM)= =+ ∞ dB Step III: Phase margin requirement is 50 deg. plus 10 deg. Total PM is 60 deg.

Now we have PM of 18 deg. and needs to add 42 deg.

Step IV: Determine ,
$$\sin \varphi_{max} = \frac{1-\alpha}{1+\alpha}$$

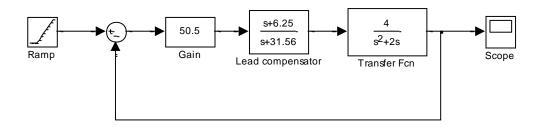
 $sin42^0 = \frac{1-\alpha}{1+\alpha}$
 $\alpha = 0.198$

<u>Step V:</u> From $-20 \log \frac{1}{\sqrt{\alpha}} = -20 \log \frac{1}{\sqrt{0.198}} = -7.028 \text{ dB}$ at ω_{max}

Select ω_{max} to be new phase crossover frequency at this frequency must be – 7.028 dB. At 9.37 rad/sec is ω_{max}

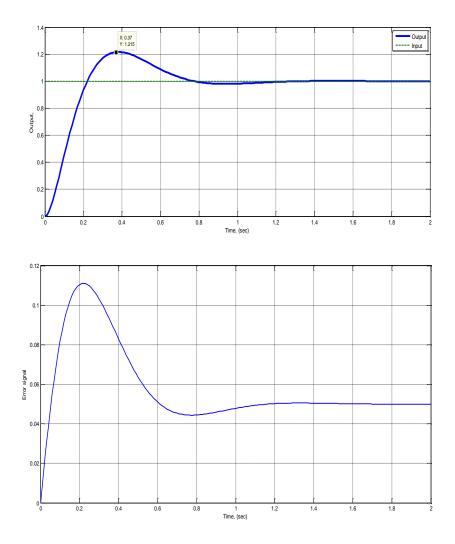
$$\omega_{max} = \frac{1}{T\sqrt{\alpha}} = 9.37 \ rad/sec$$

Thus T= 0.16; $\alpha = 0.198$


Now lead compensator is

$$G_c(s) = K_c \frac{s + 1/T}{s + 1/\alpha T} = K_c \left(\frac{s + 6.25}{s + 31.56}\right)$$

Step VI: Determine gain of lead compensator


 $K_c\alpha=K=10\to K_c=50.5$

Now lead compensator is $G_c(s) = 50.5 \left(\frac{s+6.25}{s+31.56}\right)$

Check steady state error for unit-ramp input relation with static velocity error constant and PM relation with damping ratio (% overshoot)

- Steady state error for unit-ramp input is 0.05 (Static velocity error constant is 20 sec⁻¹)
- % overshoot is 12.15

Bode diagram of Open-loop TF $G_c(s)G(s) = 50.5\left(\frac{s+6.25}{s+31.56}\right)\left(\frac{4}{s(s+2)}\right)$ Phase margin(PM)= _____ deg. at _____ rad/sec ; Gain margin(GM)=____ dB at _____ rad/sec