
Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Control System Design

Performance Specifications: Time domain and Frequency domain

- Absolute and Relative stability
- Speed of dynamic responses
- Accuracy at steady state operation

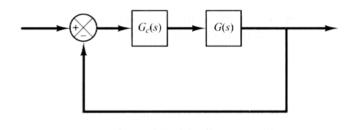
<u>Unit-step response for input</u> $R(s) = \frac{1}{s}$

- Rise time, (t,) , Peak time (t,), Settling time (t,) 5% error or 2% error
- %Percent overshoot, Maximum overshoot (M_p)
- Steady state error for step input, Static position error constant (K_p)

<u>Unit-ramp response for input</u> $R(s) = \frac{1}{s^2}$

- Steady state error for ramp input, Static velocity error constant, (K_v)

Open-loop transfer function

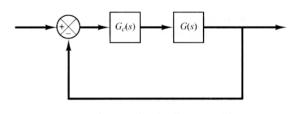

- Type of system in unity feedback control system
- Gain margin(GM), (dB); Phase margin(PM), (degree), Damping ratio (ζ) ,

Closed-loop transfer function

- Natural frequency (ω_n) , rad/sec; Damping ratio (ζ) , Gain
- Bandwidth frequency (ω_{BW}) , rad/sec

 $\sim 1 \sim$

Control system diagram in unity feedback



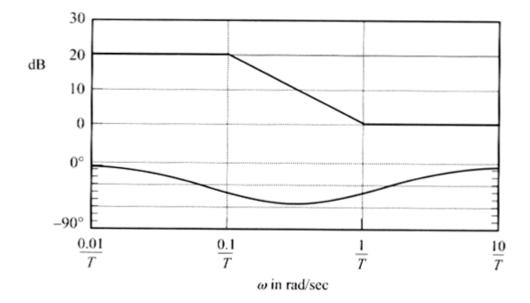
$G_{C}(s)$ – Compensator / Controller; G(s) – Plant / Transfer function

Function	Compensator	Transfer function	Characteristics
Improve steady-state error	PI	$K\frac{s+z_c}{s}$	 Increases system type. Error becomes zero. Zero at -z_c is small and negative.
			4. Active circuits are required to implement.
Improve steady-state error	Lag	$K\frac{s+z_c}{s+p_c}$	 Error is improved but not driven to zero. Pole at -p_c is small and negative. Zero at -z_c is close to, and to the left of, the pole at -p_c. Active circuits are not required to implement.
Improve transient response	PD	$K(s+z_c)$	 Zero at -z_c is selected to put design point on root locus. Active circuits are required to implement. Can cause noise and saturation; implement with rate feedback or with a pole (lead).
Improve transient response	Lead	$K\frac{s+z_c}{s+p_c}$	 Zero at -z_c and pole at -p_c are selected to put design point on root locus. Pole at -p_c is more negative than zero at -z_c. Active circuits are not required to implement.
mprove teady-state rror and ransient esponse	PID	$K\frac{(s+z_{\text{lag}})(s+z_{\text{lead}})}{s}$	 Lag zero at -z_{lag} and pole at origin improve steady-state error. Lead zero at -z_{lead} improves transient response. Lag zero at -z_{lag} is close to, and to the left of, the origin. Lead zero at -z_{lead} is selected to put design poin on root locus. Active circuits required to implement. Can cause noise and saturation; implement with rate feedback or with an additional pole.
mprove teady-state rror and ransient esponse	Lag-lead	$K\frac{(s+z_{\rm lag})(s+z_{\rm lead})}{(s+p_{\rm lag})(s+p_{\rm lead})}$	 Lag pole at -p_{lag} and lag zero at -z_{lag} are used to improve steady-state error. Lead pole at -p_{lead} and lead zero at -z_{lead} are used to improve transient response. Lag pole at -p_{lag} is small and negative. Lag zero at -z_{lag} is close to, and to the left of, lag pole at -p_{lag}. Lead zero at -z_{lead} and lead pole at -p_{lead} are selected to put design point on root locus. Lead pole at -p_{lead}. Active circuits are not required to implement.

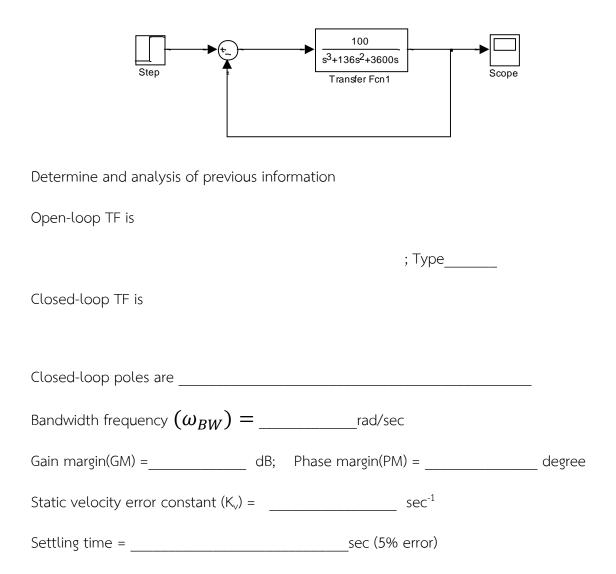
Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Lag Compensator

Lag compensation improves steady-state error in unity feedback system


Lag compensation techniques based on the frequency response approach

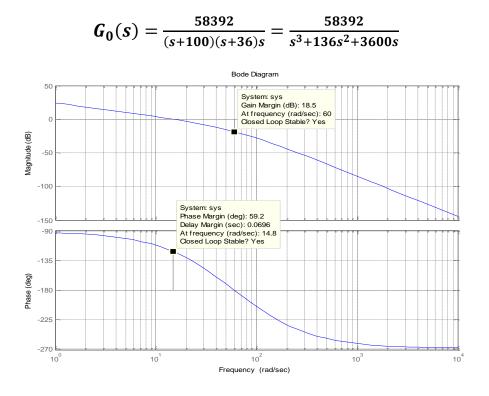
Lag compensator transfer function


$$G_{c}(s) = K_{c}\beta \frac{Ts+1}{\beta Ts+1} = K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}} \qquad (\beta > 1)$$

Zero of lag compensation is $\frac{1}{T}$ Pole of lag compensation is $\frac{1}{\beta T}$

Compensate magnitude and phase profile shown in figure

Example Lag design ; Desired system is K_v of 16.22 sec⁻¹, PM of 60 degree and GM of least 10 dB


<u>Step I:</u> Determine total gain (K) of open-loop TF to satisfy the requirement on the given static velocity error constant (K_v)= 16.22

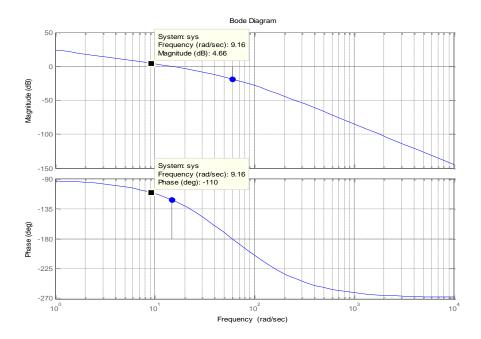
$$K_{v} = \lim_{s \to 0} sG_{c}(s)G(s) = \lim_{s \to 0} s\left(K_{c}\beta \frac{Ts+1}{\beta Ts+1}\right) \left(\frac{100}{s(s+36)(s+100)}\right) = 16.22$$

where $K_{c}\beta = K$, thus

K = 16.22(36) = 583.92

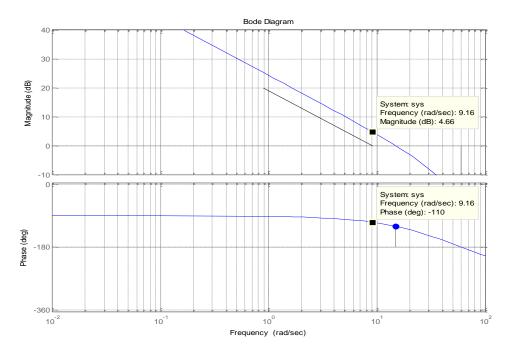
New open-loop transfer function

 $G_0(s) = \frac{16.22(36)}{(s+100)(s+36)s} = \frac{58392}{s^3+136s^2+3600s}$



Step II: Plot bode diagram of new open-loop TF with new gain such as

Determine: Phase margin(PM)= 59.2 deg. at 14.8 rad/sec ; Gain margin(GM)= 18.5 dB at 60 rad/sec

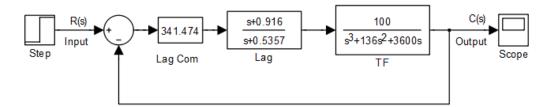

Step III: Phase margin requirement is 60 deg. plus 10 deg. Total PM requirement is 60+10 = 70 deg.

For PM of 70 deg., -180+70 = - 110 deg. ; At 9.16 rad/sec has phase -110 deg. and magnitude is 4.66 dB. We must change phase margin frequency from 14.8 rad/sec to 9.16 rad/sec

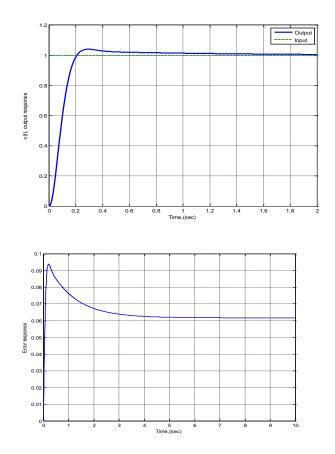
<u>Step IV</u>: The corner frequency $\omega = 1/T$ may be chosen 1 decade below the new gain crossover frequency

Step V:
$$20\log \frac{1}{\beta} = -4.66 \rightarrow \beta = 1.71$$

Pole of lag compensation is
$$rac{1}{eta T}=0.5357$$


Now lag compensator is $G_c(s) = K_c \frac{s+0.916}{s+0.5357}$

Step VI: Determine gain of lag compensator


$$G_c(s) = K_c \frac{s + 1/T}{s + 1/\beta T} = K_c \frac{s + 0.916}{s + 0.5357}$$

$$T = \frac{1}{0.916} = 1.092; \ \beta = 1.71;$$

$$K_c \beta = K = 583.92 \rightarrow K_c = 341.474$$

Now lag compensator is $G_c(s) = 341.474 \left(\frac{s+0.916}{s+0.5357} \right)$

Check steady state error for unit-ramp input relation with velocity constant and PM relation with damping ratio (% overshoot)

